Date Log
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
An overview of Albumin - Based Nanoparticles: Targeted Precision in Cancer Chemotherapy
Corresponding Author(s) : Prema Rathinam
International Journal of Allied Medical Sciences and Clinical Research,
Vol. 11 No. 4 (2023): 2023 Volume -11 - Issue 4
Abstract
Cancer is the leading cause of death worldwide. According to WHO estimates, cancer ranks as the first or second leading cause of death in 183 countries. Chemotherapy is the most widely used promising treatment for cancer. However, patients undergoing chemotherapy often suffer from serious side effects due to the impact of chemo-drugs on normal cells. Targeted delivery of cytotoxic drugs in chemotherapy presents a major challenge, which can be addressed by using nanoparticles. Nanoparticles serve as an excellent carrier for cytotoxic drugs to target tumor cells, resulting in a reduction of side effects. These nanoparticles are biodegradable and biocompatible. Recent research has demonstrated that nutrient transporters can improve targeting in tumor cells. Cancer cells often over express nutrient transporters to fulfill their nutritional requirements for rapid growth. Albumin binding proteins (ABPs) are more numerous in tumor cells, making them a good target for tumor-specific drug delivery. Albumin is a plasma protein characterized by high biocompatibility, biodegradability, and non-immunogenicity. When drugs are infused with albumin, it helps protect the drugs from elimination and immune responses. For example: Abraxane is a solvent-free nano version of Taxol, which is already marketed albumin-based nanoparticles used in the treatment of breast cancer, pancreatic cancer, and non-small lung cancer. It contains paclitaxel as an anti-cancer agent. Albumin-based nanoparticles also have the ability to cross the blood-brain barrier, offering new possibilities for the treatment of brain cancer and CNS diseases. Therefore, this review focuses on the significance of albumin nanoparticles in cancer chemotherapy, their advantages, and recent updates in albumin-based nanoparticles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the definition of cancer. Mol Cancer Res. 2023 Nov 1; 21(11):1142-7. doi: 10.1158/1541-7786.MCR-23-0411, PMID 37409952.
- Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer: the state of the art. Colloids Surf B Biointerfaces. 2015; 126:631-48. doi: 10.1016/j.colsurfb.2014.12.041, PMID 25591851.
- Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2022 Oct-Nov; 156(4&5):598-607. doi: 10.4103/ijmr.ijmr_1821_22, PMID 36510887.
- Reijneveld EAE, Bor P, Dronkers JJ, Argudo N, Ruurda JP, Veenhof C. Impact of Curative Treatment on the physical fitness of Patients with Esophageal Cancer: A Systematic Review and Meta-Analysis. Eur J Surg Oncol. 2022; 48(2):391-402. doi: 10.1016/j.ejso.2021.08.015, PMID 34426032.
- Chen YH, Molenaar D, Uyl-de Groot CA, van Vulpen M, Blommestein HM. Medical Resource Use and Medical costs for Radiotherapy-Related Adverse Effects: A Systematic Review. Cancers. 2022; 14(10):2444. doi: 10.3390/cancers14102444, PMID 35626049.
- Chaplin DJ, Hill SA, Bell KM, Tozer GM. Modification of tumor blood flow: current status and future directions. Semin Radiat Oncol. 1998; 8(3):151-63. doi: 10.1016/s1053-4296(98)80041-6, PMID 9634492.
- Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev. 2001; 53(3):285-305. doi: 10.1016/s0169-409x(01)00233-2, PMID 11744173.
- Gamelin EC, Danquechin-Dorval EM, Dumesnil YF, Maillart PJ, Goudier MJ, Burtin PC et al. Relationship between 5- fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer. 1996; 77(3):441-51. doi: 10.1002/(SICI)1097-0142(19960201)77:3<441::AID-CNCR4>3.0.CO;2-N, PMID 8630950.
- Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012; 19(5):453-8. doi: 10.5603/cj.2012.0084, PMID 23042307.
- Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006 Aug 1; 5(8):1909-17. doi: 10.1158/1535-7163.MCT-06-0141, PMID 16928810.
- Narayana A. Applications of nanotechnology in cancer: A literature review of imaging and treatment. J Nucl Med Radiat Ther. 2014; 05(4):1-9. doi: 10.4172/2155-9619.1000195.
- Chatterjee P, Kumar S. Current developments in nanotechnology for cancer treatment. Mater Today Proc. 2022; 48:1754-8. doi: 10.1016/j.matpr.2021.10.048.
- Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004; 3(8):711-5. doi: 10.1038/nrd1470, PMID 15286737.
- Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M et al. New challenges in the Use of nanomedicine in Cancer Therapy. Bioengineered. 2022; 13(1):759-73. doi: 10.1080/21655979.2021.2012907, PMID 34856849.
- Niazi M, Zakeri-Milani P, Najafi Hajivar S, Soleymani Goloujeh M, Ghobakhlou N, Shahbazi Mojarrad J, et al. Nano- based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin Drug Metab Toxicol. 2016 Jun 13; 12(9):1021-33. doi: 10.1080/17425255.2016.1196186, PMID 27267126.
- Kreuter J. Nanoparticles - a historical perspective. Int J Pharm. 2007; 331(1):1-10. doi: 10.1016/j.ijpharm.2006.10.021, PMID 17110063.
- Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989; 6(3):193-210. PMID 2692843.
- Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986; 46(12 Pt 1):6387-92. PMID 2946403.
- Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011; 44(10):1123-34. doi: 10.1021/ar200054n, PMID 21692448.
- Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012; 41(7):2971-3010. doi: 10.1039/c2cs15344k, PMID 22388185.
- Patil GV. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res. 2003; 58(3):219-47. doi: 10.1002/ddr.10157.
- Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012; 157(2):168-82. doi: 10.1016/j.jconrel.2011.07.031, PMID 21839127.
- Sharma RI, Pereira M, Schwarzbauer JE, Moghe PV. Albumin-derived nanocarriers: substrates for enhanced cell adhesive ligand display and cell motility. Biomaterials. 2006; 27(19):3589-98. doi: 10.1016/j.biomaterials.2006.02.007, PMID 16527347.
- Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008; 132(3):171-83. doi: 10.1016/j.jconrel.2008.05.010, PMID 18582981.
- Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. AAPS PharmSciTech. 2014 Apr 2; 15(4):822-33. doi: 10.1208/s12249-014-0107-x, PMID 24687241.
- Elsadek B, Kratz F. Impact of albumin on drug delivery--new applications on the horizon. J Control Release. 2012; 157(1):4-28. doi: 10.1016/j.jconrel.2011.09.069, PMID 21959118.
- Van Zuylen L, Verweij J, Sparreboom A. Role of formulation vehicles in taxane pharmacology. Investig New Drugs. 2001; 19(2):125-41. doi: 10.1023/a:1010618632738, PMID 11392447.
- Ma P, Mumper RJ. Paclitaxel nano-delivery systems: A comprehensive review. J Nanomed Nanotechnol. 2013; 4(2):1000164. doi: 10.4172/2157-7439.1000164, PMID 24163786.
- Elsadek B, Kratz F. Impact of albumin on drug delivery--new applications on the horizon. J Control Release. 2012; 157(1):4-28. doi: 10.1016/j.jconrel.2011.09.069, PMID 21959118.
- Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006; 17(8):1263-8. doi: 10.1093/annonc/mdl104, PMID 16740598.
- Schnitzer JE. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol. 1992; 262(1 Pt 2):H246-54. doi: 10.1152/ajpheart.1992.262.1.H246, PMID 1733316.
- Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem. 1997; 272(41):25968-75. doi: 10.1074/jbc.272.41.25968, PMID 9325331.
- Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano. 2009; 3(12):4110-6. doi: 10.1021/nn9012274, PMID 19919048.
- Kouchakzadeh H, Safavi MS, Shojaosadati SA. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv Protein Chem Struct Biol. 2015; 98:121-43. doi: 10.1016/bs.apcsb.2014.11.002, PMID 25819278.
- Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2008; 13(2):199-223. doi: 10.3233/JAD-2008-13210.
- Srikanth M, Kessler JA. Nanotechnology-novel therapeutics for CNS disorders. Nat Rev Neurol. 2012; 8(6):307-18. doi: 10.1038/nrneurol.2012.76, PMID 22526003.
- Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer’s disease. J Cereb Blood Flow Metab. 2015; 35(7):1055-68. doi: 10.1038/jcbfm.2015.76, PMID 25899298.
- Vijayan M, Reddy PH. Stroke, Vascular dementia, and Alzheimer’s disease: molecular links. J Alzheimers Dis. 2016; 54(2):427-43. doi: 10.3233/JAD-160527, PMID 27567871.
- Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS et al. A critical evaluation of neuroprotective and neurodegenerative microRNAs in Alzheimer’s disease. Biochem Biophys Res Commun. 2017; 483(4):1156-65. doi: 10.1016/j.bbrc.2016.08.067, PMID 27524239.
- Vilella A, Ruozi B, Belletti D, Pederzoli F, Galliani M, Semeghini V et al. Endocytosis of nanomedicines: the Case of Glycopeptide engineered PLGA nanoparticles. Pharmaceutics. 2015; 7(2):74-89. doi: 10.3390/pharmaceutics7020074, PMID 26102358.
- Gao H, Pang Z, Jiang X. Targeted delivery of nano-therapeutics for major J. Xie, et al. Biomaterials. 2019: 11949115 disorders of the central nervous system, Pharm. Res. 30; (2013); 224:2485-98.
- Dong X. Current strategies for brain drug delivery. Theranostics. 2018; 8(6):1481-93. doi: 10.7150/thno.21254, PMID 29556336.
- Brown RC, Morris AP, O’Neil RG. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 2007; 1130(1):17-30. doi: 10.1016/j.brainres.2006.10.083, PMID 17169347.
- Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood-brain barrier permeation. Ther Deliv. 2015; 6(8):961-71. doi: 10.4155/tde.15.32, PMID 26305616.
- Mittapalli RK, Manda VK, Adkins CE, Geldenhuys WJ, Lockman PR. Exploiting nutrient transporters at the blood-brain barrier to improve brain distribution of small molecules. Ther Deliv. 2010; 1(6):775-84. doi: 10.4155/tde.10.76, PMID 22834013.
- Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart J. C, Hartung. G, Maier-Borst. W, Heene. D. L, Plasma Protein (Albumin) Catabolism by the Tumor Itself Implications for Tumor Metabolism and the Genesis of Cachexia. Crit. Rev. Oncol. Hematol. 1997; 26: 77 - 100.
- Wunder A, Stehle G, Sinn H, Schrenk H, Hoffbiederbeck D, Bader F et al. Enhanced albumin uptake by rat tumors. Int J Oncol. 1997; 11(3):497-507. doi: 10.3892/ijo.11.3.497, PMID 21528238.
- Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum proteinMore Than Just a Serum Protein. Front Physiol. 2014; 5: 299. doi: 10.3389/fphys.2014.00299, PMID 25161624.
- Rempel SA, Golembieski WA, Fisher JL, Maile M, Nakeff A. SPARC modulates cell growth, attachment and migration of U87 glioma cells on brain extracellular matrix proteins. J Neurooncol. 2001; 53(2):149-60. doi: 10.1023/a:1012201300188, PMID 11716067.
- Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, et al. Blood-brain-barrier-penetrating albumin nanoparticles biomimetic drug delivery via albumin – binding protein pathways for antiglioma therapy. ACS Nano. 2016 Nov 8; 10(11):9999-10012. doi: 10.1021/acsnano.6b04268, PMID 27934069.
References
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the definition of cancer. Mol Cancer Res. 2023 Nov 1; 21(11):1142-7. doi: 10.1158/1541-7786.MCR-23-0411, PMID 37409952.
Estanqueiro M, Amaral MH, Conceição J, Sousa Lobo JM. Nanotechnological carriers for cancer: the state of the art. Colloids Surf B Biointerfaces. 2015; 126:631-48. doi: 10.1016/j.colsurfb.2014.12.041, PMID 25591851.
Sathishkumar K, Chaturvedi M, Das P, Stephen S, Mathur P. Cancer incidence estimates for 2022 & projection for 2025: result from National Cancer Registry Programme, India. Indian J Med Res. 2022 Oct-Nov; 156(4&5):598-607. doi: 10.4103/ijmr.ijmr_1821_22, PMID 36510887.
Reijneveld EAE, Bor P, Dronkers JJ, Argudo N, Ruurda JP, Veenhof C. Impact of Curative Treatment on the physical fitness of Patients with Esophageal Cancer: A Systematic Review and Meta-Analysis. Eur J Surg Oncol. 2022; 48(2):391-402. doi: 10.1016/j.ejso.2021.08.015, PMID 34426032.
Chen YH, Molenaar D, Uyl-de Groot CA, van Vulpen M, Blommestein HM. Medical Resource Use and Medical costs for Radiotherapy-Related Adverse Effects: A Systematic Review. Cancers. 2022; 14(10):2444. doi: 10.3390/cancers14102444, PMID 35626049.
Chaplin DJ, Hill SA, Bell KM, Tozer GM. Modification of tumor blood flow: current status and future directions. Semin Radiat Oncol. 1998; 8(3):151-63. doi: 10.1016/s1053-4296(98)80041-6, PMID 9634492.
Needham D, Dewhirst MW. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv Drug Deliv Rev. 2001; 53(3):285-305. doi: 10.1016/s0169-409x(01)00233-2, PMID 11744173.
Gamelin EC, Danquechin-Dorval EM, Dumesnil YF, Maillart PJ, Goudier MJ, Burtin PC et al. Relationship between 5- fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer. 1996; 77(3):441-51. doi: 10.1002/(SICI)1097-0142(19960201)77:3<441::AID-CNCR4>3.0.CO;2-N, PMID 8630950.
Sorrentino MF, Kim J, Foderaro AE, Truesdell AG. 5-fluorouracil induced cardiotoxicity: review of the literature. Cardiol J. 2012; 19(5):453-8. doi: 10.5603/cj.2012.0084, PMID 23042307.
Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006 Aug 1; 5(8):1909-17. doi: 10.1158/1535-7163.MCT-06-0141, PMID 16928810.
Narayana A. Applications of nanotechnology in cancer: A literature review of imaging and treatment. J Nucl Med Radiat Ther. 2014; 05(4):1-9. doi: 10.4172/2155-9619.1000195.
Chatterjee P, Kumar S. Current developments in nanotechnology for cancer treatment. Mater Today Proc. 2022; 48:1754-8. doi: 10.1016/j.matpr.2021.10.048.
Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004; 3(8):711-5. doi: 10.1038/nrd1470, PMID 15286737.
Rasool M, Malik A, Waquar S, Arooj M, Zahid S, Asif M et al. New challenges in the Use of nanomedicine in Cancer Therapy. Bioengineered. 2022; 13(1):759-73. doi: 10.1080/21655979.2021.2012907, PMID 34856849.
Niazi M, Zakeri-Milani P, Najafi Hajivar S, Soleymani Goloujeh M, Ghobakhlou N, Shahbazi Mojarrad J, et al. Nano- based strategies to overcome p-glycoprotein-mediated drug resistance. Expert Opin Drug Metab Toxicol. 2016 Jun 13; 12(9):1021-33. doi: 10.1080/17425255.2016.1196186, PMID 27267126.
Kreuter J. Nanoparticles - a historical perspective. Int J Pharm. 2007; 331(1):1-10. doi: 10.1016/j.ijpharm.2006.10.021, PMID 17110063.
Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carrier Syst. 1989; 6(3):193-210. PMID 2692843.
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986; 46(12 Pt 1):6387-92. PMID 2946403.
Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011; 44(10):1123-34. doi: 10.1021/ar200054n, PMID 21692448.
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012; 41(7):2971-3010. doi: 10.1039/c2cs15344k, PMID 22388185.
Patil GV. Biopolymer albumin for diagnosis and in drug delivery. Drug Dev Res. 2003; 58(3):219-47. doi: 10.1002/ddr.10157.
Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012; 157(2):168-82. doi: 10.1016/j.jconrel.2011.07.031, PMID 21839127.
Sharma RI, Pereira M, Schwarzbauer JE, Moghe PV. Albumin-derived nanocarriers: substrates for enhanced cell adhesive ligand display and cell motility. Biomaterials. 2006; 27(19):3589-98. doi: 10.1016/j.biomaterials.2006.02.007, PMID 16527347.
Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008; 132(3):171-83. doi: 10.1016/j.jconrel.2008.05.010, PMID 18582981.
Narvekar M, Xue HY, Eoh JY, Wong HL. Nanocarrier for poorly water-soluble anticancer drugs—barriers of translation and solutions. AAPS PharmSciTech. 2014 Apr 2; 15(4):822-33. doi: 10.1208/s12249-014-0107-x, PMID 24687241.
Elsadek B, Kratz F. Impact of albumin on drug delivery--new applications on the horizon. J Control Release. 2012; 157(1):4-28. doi: 10.1016/j.jconrel.2011.09.069, PMID 21959118.
Van Zuylen L, Verweij J, Sparreboom A. Role of formulation vehicles in taxane pharmacology. Investig New Drugs. 2001; 19(2):125-41. doi: 10.1023/a:1010618632738, PMID 11392447.
Ma P, Mumper RJ. Paclitaxel nano-delivery systems: A comprehensive review. J Nanomed Nanotechnol. 2013; 4(2):1000164. doi: 10.4172/2157-7439.1000164, PMID 24163786.
Elsadek B, Kratz F. Impact of albumin on drug delivery--new applications on the horizon. J Control Release. 2012; 157(1):4-28. doi: 10.1016/j.jconrel.2011.09.069, PMID 21959118.
Green MR, Manikhas GM, Orlov S, Afanasyev B, Makhson AM, Bhar P, et al. Abraxane, a novel cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann Oncol. 2006; 17(8):1263-8. doi: 10.1093/annonc/mdl104, PMID 16740598.
Schnitzer JE. gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. Am J Physiol. 1992; 262(1 Pt 2):H246-54. doi: 10.1152/ajpheart.1992.262.1.H246, PMID 1733316.
Tiruppathi C, Song W, Bergenfeldt M, Sass P, Malik AB. Gp60 activation mediates albumin transcytosis in endothelial cells by tyrosine kinase-dependent pathway. J Biol Chem. 1997; 272(41):25968-75. doi: 10.1074/jbc.272.41.25968, PMID 9325331.
Wang Z, Tiruppathi C, Minshall RD, Malik AB. Size and dynamics of caveolae studied using nanoparticles in living endothelial cells. ACS Nano. 2009; 3(12):4110-6. doi: 10.1021/nn9012274, PMID 19919048.
Kouchakzadeh H, Safavi MS, Shojaosadati SA. Efficient delivery of therapeutic agents by using targeted albumin nanoparticles. Adv Protein Chem Struct Biol. 2015; 98:121-43. doi: 10.1016/bs.apcsb.2014.11.002, PMID 25819278.
Nazem A, Mansoori GA. Nanotechnology solutions for Alzheimer’s disease: advances in research tools, diagnostic methods and therapeutic agents. J Alzheimers Dis. 2008; 13(2):199-223. doi: 10.3233/JAD-2008-13210.
Srikanth M, Kessler JA. Nanotechnology-novel therapeutics for CNS disorders. Nat Rev Neurol. 2012; 8(6):307-18. doi: 10.1038/nrneurol.2012.76, PMID 22526003.
Sweeney MD, Sagare AP, Zlokovic BV. Cerebrospinal fluid biomarkers of neurovascular dysfunction in mild dementia and Alzheimer’s disease. J Cereb Blood Flow Metab. 2015; 35(7):1055-68. doi: 10.1038/jcbfm.2015.76, PMID 25899298.
Vijayan M, Reddy PH. Stroke, Vascular dementia, and Alzheimer’s disease: molecular links. J Alzheimers Dis. 2016; 54(2):427-43. doi: 10.3233/JAD-160527, PMID 27567871.
Reddy PH, Tonk S, Kumar S, Vijayan M, Kandimalla R, Kuruva CS et al. A critical evaluation of neuroprotective and neurodegenerative microRNAs in Alzheimer’s disease. Biochem Biophys Res Commun. 2017; 483(4):1156-65. doi: 10.1016/j.bbrc.2016.08.067, PMID 27524239.
Vilella A, Ruozi B, Belletti D, Pederzoli F, Galliani M, Semeghini V et al. Endocytosis of nanomedicines: the Case of Glycopeptide engineered PLGA nanoparticles. Pharmaceutics. 2015; 7(2):74-89. doi: 10.3390/pharmaceutics7020074, PMID 26102358.
Gao H, Pang Z, Jiang X. Targeted delivery of nano-therapeutics for major J. Xie, et al. Biomaterials. 2019: 11949115 disorders of the central nervous system, Pharm. Res. 30; (2013); 224:2485-98.
Dong X. Current strategies for brain drug delivery. Theranostics. 2018; 8(6):1481-93. doi: 10.7150/thno.21254, PMID 29556336.
Brown RC, Morris AP, O’Neil RG. Tight junction protein expression and barrier properties of immortalized mouse brain microvessel endothelial cells. Brain Res. 2007; 1130(1):17-30. doi: 10.1016/j.brainres.2006.10.083, PMID 17169347.
Geldenhuys WJ, Mohammad AS, Adkins CE, Lockman PR. Molecular determinants of blood-brain barrier permeation. Ther Deliv. 2015; 6(8):961-71. doi: 10.4155/tde.15.32, PMID 26305616.
Mittapalli RK, Manda VK, Adkins CE, Geldenhuys WJ, Lockman PR. Exploiting nutrient transporters at the blood-brain barrier to improve brain distribution of small molecules. Ther Deliv. 2010; 1(6):775-84. doi: 10.4155/tde.10.76, PMID 22834013.
Stehle G, Sinn H, Wunder A, Schrenk HH, Stewart J. C, Hartung. G, Maier-Borst. W, Heene. D. L, Plasma Protein (Albumin) Catabolism by the Tumor Itself Implications for Tumor Metabolism and the Genesis of Cachexia. Crit. Rev. Oncol. Hematol. 1997; 26: 77 - 100.
Wunder A, Stehle G, Sinn H, Schrenk H, Hoffbiederbeck D, Bader F et al. Enhanced albumin uptake by rat tumors. Int J Oncol. 1997; 11(3):497-507. doi: 10.3892/ijo.11.3.497, PMID 21528238.
Merlot AM, Kalinowski DS, Richardson DR. Unraveling the mysteries of serum albumin-more than just a serum proteinMore Than Just a Serum Protein. Front Physiol. 2014; 5: 299. doi: 10.3389/fphys.2014.00299, PMID 25161624.
Rempel SA, Golembieski WA, Fisher JL, Maile M, Nakeff A. SPARC modulates cell growth, attachment and migration of U87 glioma cells on brain extracellular matrix proteins. J Neurooncol. 2001; 53(2):149-60. doi: 10.1023/a:1012201300188, PMID 11716067.
Lin T, Zhao P, Jiang Y, Tang Y, Jin H, Pan Z, et al. Blood-brain-barrier-penetrating albumin nanoparticles biomimetic drug delivery via albumin – binding protein pathways for antiglioma therapy. ACS Nano. 2016 Nov 8; 10(11):9999-10012. doi: 10.1021/acsnano.6b04268, PMID 27934069.