Date Log
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Annona muricata effect on parasitemia and lymphocyte formation of act treated malaria
Corresponding Author(s) : Kis Djamiatun
International Journal of Allied Medical Sciences and Clinical Research,
Vol. 11 No. 4 (2023): 2023 Volume -11 - Issue 4
Abstract
Combination therapy is essential to safeguard existing and future antimalarial drugs, prompting exploration into adjuvant therapies for managing cerebral malaria. This study aimed to assess the effectiveness of Annona muricata leaves extracted by water (AME) as an adjuvant for Artemisinin-based combination therapy (ACT) in mice infected with Plasmodium berghei ANKA (PbA) malaria. The research employed a Post Test Only Control Group Design for the study. A few of 24 Swiss mice were subjected to various treatments, including AME, ACT, and their combination, with a focus on host survival, lymphocyte generation, and migration. Results demonstrated that mice treated with the combination of AME and ACT exhibited significantly reduced parasitemia, and lower percentages of splenic lymphoblasts compared to control groups. Specifically, the mean percentage of splenic lymphoblasts in the AME and ACT combination group was substantially lower than in the control groups and individual treatment groups. Parasitemia levels were significantly reduced in the combination group, emphasizing the synergistic effect of A. muricata and ACT. In conclusion, A. muricata demonstrated a superior impact on parasitemia, and splenic lymphoblasts in malaria mice treated with ACT, highlighting its potential as a valuable adjuvant therapy in the fight against malaria.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- WHO. Malaria. Gen Malar Fact Sheet. 2023.
- WHO. Evidence-informed action to eliminate malaria in Indonesia. WHO result report; 2020.
- Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211(5):670-9. doi: 10.1093/infdis/jiu491, PMID 25180241.
- Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al. Artemisinin resistance in Plasmodium falciparum Malaria. N Engl J Med. 2009;361(5):455-67. doi: 10.1056/NEJMoa0808859, PMID 19641202.
- Boullé M, Witkowski B, Duru V, Sriprawat K, Nair SK, McDew-White M et al. Artemisinin-resistant Plasmodium falciparum K13 mutant alleles, Thailand-myanmar border. Emerg Infect Dis. 2016;22(8):1503-5. doi: 10.3201/eid2208.160004, PMID 27433806.
- Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TN-A, White NJ et al. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun. 2023;14(1):4568. doi: 10.1038/s41467-023-39914-3, PMID 37516752.
- Nugraha AS, Damayanti YD, Wangchuk P, Keller PA. Anti-infective and anti-cancer properties of the Annona species: their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules. 2019;24(23):4419. doi: 10.3390/molecules24234419, PMID 31816948.
- Onohuean H, Alagbonsi AI, Usman IM, Iceland Kasozi K, Alexiou A, Badr RH et al. Annona muricata Linn and Khaya grandifoliola C.DC. Reduce Oxidative Stress In Vitro and Ameliorate Plasmodium berghei -Induced Parasitemia and Cytokines in BALB/c Mice. J Evid Based Integr Med. 2021;26. doi: 10.1177/2515690X211036669.
- Freitas do Rosário AP, Lamb T, Spence P, Stephens R, Lang A, Roers A et al. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: A critical mechanism for protection from severe immunopathology during malaria infection. J Immunol. 2012;188(3):1178-90. doi: 10.4049/jimmunol.1102755, PMID 22205023.
- Surette FA, Guthmiller JJ, Li L, Sturtz AJ, Vijay R, Pope RL et al. Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-plasmodium humoral immunity. PLOS Pathog. 2021;17(2):e1009288. doi: 10.1371/journal.ppat.1009288, PMID 33529242.
- Wilson NO, Jain V, Roberts CE, Lucchi N, Joel PK, Singh MP et al. CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Dis Markers. 2011;30(1):39-49. doi: 10.3233/DMA-2011-0763, PMID 21508508.
- Lekpor CE, Botchway F, Kusi KA, Adjei AA, Wilson MD, Stiles JK et al. Angiogenic and angiostatic factors present in the saliva of malaria patients. Malar J. 2022;21(1):220. doi: 10.1186/s12936-022-04221-7, PMID 35836234.
- Ofir-Birin Y, Ben Ami Pilo H, Cruz Camacho A, Rudik A, Rivkin A, Revach OY et al. Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nat Commun. 2021;12(1):4851. doi: 10.1038/s41467-021-24997-7, PMID 34381047.
- Djamiatun K, Matug S, Prasetyo A, Wijayahadi N, Nugroho D, Muricata A. Modulate brain-CXCL10 expression during cerebral malaria phase. IOP Conf S Earth Environ Sci. 2017; 55.012034.DOI: 10.1088/1755-1315/55/1/012034.
- Sulayman A, Djamiatun K-, Muniroh M. Effectivity of Annona muricata and artemisinin combined therapy on brain CXCL10 expression (study in Swiss mice during severe Plasmodium berghei Anka infection). J Biomed Transl Res. 2019;5(2):47-52. doi: 10.14710/jbtr.v5i2.4802.
- Ioannidis LJ, Nie CQ, Ly A, Ryg-Cornejo V, Chiu CY, Hansen DS. Monocyte- and neutrophil-derived CXCL10 impairs efficient control of blood-stage malaria infection and promotes severe disease. J Immunol. 2016;196(3):1227-38. doi: 10.4049/jimmunol.1501562, PMID 26718341.
- Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA et al. Chemokine receptor Cxcr3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci U S A. 2008;105(12):4814-9. doi: 10.1073/pnas.0801544105, PMID 18347328.
- Miu J, Mitchell AJ, Müller M, Carter SL, Manders PM, McQuillan JA et al. Chemokine gene Expression during fatal murine cerebral malaria and protection due to Cxcr3 deficiency. J Immunol. 2008;180(2):1217-30. doi: 10.4049/jimmunol.180.2.1217, PMID 18178862.
- Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS et al. Ip-10-Mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLOS Pathog. 2009;5(4):e1000369. doi: 10.1371/journal.ppat.1000369, PMID 19343215.
- Wilson NO, Solomon W, Anderson L, Patrickson J, Pitts S, Bond V et al. Pharmacologic inhibition of CXCL10 in combination with antimalarial therapy eliminates mortality associated with murine model of cerebral malaria. PLOS ONE. 2013;8(4):e60898. doi: 10.1371/journal.pone.0060898, PMID 23630573.
- Pais TF, Ali H, Moreira da Silva J, Duarte N, Neres R, Chhatbar C et al. Brain endothelial Sting1 activation by Plasmodium-sequestered heme promotes cerebral malaria via Type I Ifn response. Proc Natl Acad Sci U S A. 2022;119(36):e2206327119.DOI: doi. doi: 10.1073/pnas.2206327119, PMID 36037380.
- Albakoush AAI, Djamiatun K. Spleen-CXCL10-expression of Plasmodium berghei Anka-infected-Swiss mice treated with Annona muricata. Int J Novel Res Dev. 2023;8(7).
- Djamiatun K, Abdulaziz KMA, Naamat WFA, Kristina TN, Nugroho D. Annona muricata associated with increase Phytohemaglutinin induced spleen IL-10 production of Swiss mice during cerebral malaria phase. Adv Sci Lett. 2017;23(4):3344-8. doi: 10.1166/asl.2017.9161.
- Djamiatun K, Naamat WFA, Dharmana E, Wijayahadi N, Nugroho D. Reduce spleen-IFN-gamma correlated with CXCL9 levels during cerebral malaria phase in Annona muricata-treated Swiss mouse study. Adv Sci Lett. 2017;23(4):3380-4. doi: 10.1166/asl.2017.9179.
- Minigo G, Woodberry T, Piera KA, Salwati E, Tjitra E, Kenangalem E et al. Parasite-dependent expansion of Tnf receptor Ii–positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLOS Pathog. 2009;5(4):e1000402. doi: 10.1371/journal.ppat.1000402, PMID 19390618.
- Mandala WL, Msefula CL, Gondwe EN, Gilchrist JJ, Graham SM, Pensulo P et al. Lymphocyte perturbations in Malawian children with severe and uncomplicated malaria. Clin Vaccine Immunol. 2015;23(2):95-103. doi: 10.1128/CVI.00564-15, PMID 26581890.
- Del Portillo HA, Ferrer MCO, Brugat T, Martín-Jaular L, Langhorne J, Lacerda MVG. The role of the spleen in malaria. Cell Microbiol. 2012;14(3):343-55. doi: 10.1111/j.1462-5822.2011.01741.x, PMID 22188297.
- Gómez-Pérez GP, van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J. 2014;13:335. doi: 10.1186/1475-2875-13-335, PMID 25158979.
- Ocaña-Morgner C, Mota MM, Rodriguez A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med. 2003;197(2):143-51. doi: 10.1084/jem.20021072, PMID 12538654.
- Roux CM, Butler BP, Chau JY, Paixão TA, Cheung KW, Santos RL et al. Both hemolytic anemia and malaria parasite-specific factors increase susceptibility to nontyphoidalSalmonella entericaSerovar typhimurium infection in mice. Infect Immun. 2010;78(4):1520-7. doi: 10.1128/IAI.00887-09, PMID 20100860.
- Krücken J, Dkhil MA, Braun JV, Schroetel RMU, El‐Khadragy MF, Carmeliet P et al. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun. 2005;73(1):436-43. doi: 10.1128/IAI.73.1.436-443.2005, PMID 15618182.
- Hommel B, Galloula A, Simon A, Buffet P. Hyposplenism revealed by Plasmodium malariae infection. Malar J. 2013;12:271. doi: 10.1186/1475-2875-12-271, PMID 23914838.
- Mubaraki MA, Hafiz TA, Dkhil MA, Al-Quraishy S. Beneficial effect of Punica granatum Peel extract on murine malaria-induced spleen injury. BMC Complement Altern Med. 2016;16:221. doi: 10.1186/s12906-016-1207-9, PMID 27422638.
- Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6(9):eaay9269. doi: 10.1126/sciadv.aay9269, PMID 32133407.
- Pouniotis DS, Proudfoot O, Bogdanoska V, Apostolopoulos V, Fifis T, Plebanski M. Dendritic cells induce immunity and long-lasting protection against blood-stage malaria despite an in vitro parasite-induced maturation defect. Infect Immun. 2004;72(9):5331-9. doi: 10.1128/IAI.72.9.5331-5339.2004, PMID 15322030.
- Urban BC, Ferguson DJP, Pain A, Willcox N, Plebanski M, Austyn JM et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400(6739):73-7. doi: 10.1038/21900, PMID 10403251.
- Urban BC, Hien TT, Day NPJ, Phu NH, Roberts R, Pongponratn E et al. Plasmodium falciparumMalaria causes specific patterns of splenic architectural disorganization. Infect Immun. 2005. doi: 10.1128/iai.73.4.1986-1994.2005.
- Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S et al., Coban C, Akira S, Takeda K, Yasutomo K, Torii M, and Himeno K, Malaria Parasites Require Tlr9 Signaling for Immune Evasion by Activating Regulatory T Cells. The Journal of Immunology, 2008.DOI: 10.4049.
- Millington OR, Gibson VB, Rush CM, Zinselmeyer BH, Phillips RS, Garside P et al. Malaria impairs T cell clustering and immune priming despite normal Signal 1 from dendritic cells. PLOS Pathog. 2007;3(10):1380-7. doi: 10.1371/journal.ppat.0030143, PMID 17937497.
- Skorokhod OA, Alessio M, Mordmüller B, Arese P, Schwarzer E. Hemozoin (Malarial Pigment) Inhibits Differentiation and Maturation of Human Monocyte-Derived Dendritic Cells: a Peroxisome Proliferator-Activated Receptor-γ-Mediated Effect. Journal of Immunology. 2004;173(6):4066-74. doi: 10.4049/jimmunol.173.6.4066.
- Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005. doi: 10.1084.
- Djamiatun K-, Wirman R-, and Wijayahadi N-. Effect of combination Songga-wood-stem (Strychnos ligustrina Blume) and antimalaria-act on IL-10 production of malaria. 2022:2022.3. doi: 10.14710/jbtr.v1i1.13906.
- Kumar R, Ng S, Engwerda C. The role of IL-10 in malaria: A double edged sword. Front Immunol. 2019:10.229. doi: 10.3389.
- Abosalif KOA, Abdalla AE, Junaid K, Eltayeb LB, Ejaz H. The interleukin-10 family: major regulators of the immune response against Plasmodium falciparum infections. Saudi J Biol Sci. 2023.-103805;30(11):103805. doi: 10.1016/j.sjbs, PMID 37727525.
- Surette FA, Guthmiller JJ, Li L, Sturtz AJ, Vijay R, Pope RL et al. Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-plasmodium humoral immunity. PLOS Pathog. 2021;17(2):e1009288. doi: 10.1371/journal.ppat.1009288: 0.1371. PMID 33529242.
References
WHO. Malaria. Gen Malar Fact Sheet. 2023.
WHO. Evidence-informed action to eliminate malaria in Indonesia. WHO result report; 2020.
Takala-Harrison S, Jacob CG, Arze C, Cummings MP, Silva JC, Dondorp AM et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J Infect Dis. 2015;211(5):670-9. doi: 10.1093/infdis/jiu491, PMID 25180241.
Dondorp AM, Nosten F, Yi P, Das D, Phyo AP, Tarning J et al. Artemisinin resistance in Plasmodium falciparum Malaria. N Engl J Med. 2009;361(5):455-67. doi: 10.1056/NEJMoa0808859, PMID 19641202.
Boullé M, Witkowski B, Duru V, Sriprawat K, Nair SK, McDew-White M et al. Artemisinin-resistant Plasmodium falciparum K13 mutant alleles, Thailand-myanmar border. Emerg Infect Dis. 2016;22(8):1503-5. doi: 10.3201/eid2208.160004, PMID 27433806.
Nguyen TD, Gao B, Amaratunga C, Dhorda M, Tran TN-A, White NJ et al. Preventing antimalarial drug resistance with triple artemisinin-based combination therapies. Nat Commun. 2023;14(1):4568. doi: 10.1038/s41467-023-39914-3, PMID 37516752.
Nugraha AS, Damayanti YD, Wangchuk P, Keller PA. Anti-infective and anti-cancer properties of the Annona species: their ethnomedicinal uses, alkaloid diversity, and pharmacological activities. Molecules. 2019;24(23):4419. doi: 10.3390/molecules24234419, PMID 31816948.
Onohuean H, Alagbonsi AI, Usman IM, Iceland Kasozi K, Alexiou A, Badr RH et al. Annona muricata Linn and Khaya grandifoliola C.DC. Reduce Oxidative Stress In Vitro and Ameliorate Plasmodium berghei -Induced Parasitemia and Cytokines in BALB/c Mice. J Evid Based Integr Med. 2021;26. doi: 10.1177/2515690X211036669.
Freitas do Rosário AP, Lamb T, Spence P, Stephens R, Lang A, Roers A et al. IL-27 promotes IL-10 production by effector Th1 CD4+ T cells: A critical mechanism for protection from severe immunopathology during malaria infection. J Immunol. 2012;188(3):1178-90. doi: 10.4049/jimmunol.1102755, PMID 22205023.
Surette FA, Guthmiller JJ, Li L, Sturtz AJ, Vijay R, Pope RL et al. Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-plasmodium humoral immunity. PLOS Pathog. 2021;17(2):e1009288. doi: 10.1371/journal.ppat.1009288, PMID 33529242.
Wilson NO, Jain V, Roberts CE, Lucchi N, Joel PK, Singh MP et al. CXCL4 and CXCL10 predict risk of fatal cerebral malaria. Dis Markers. 2011;30(1):39-49. doi: 10.3233/DMA-2011-0763, PMID 21508508.
Lekpor CE, Botchway F, Kusi KA, Adjei AA, Wilson MD, Stiles JK et al. Angiogenic and angiostatic factors present in the saliva of malaria patients. Malar J. 2022;21(1):220. doi: 10.1186/s12936-022-04221-7, PMID 35836234.
Ofir-Birin Y, Ben Ami Pilo H, Cruz Camacho A, Rudik A, Rivkin A, Revach OY et al. Malaria parasites both repress host CXCL10 and use it as a cue for growth acceleration. Nat Commun. 2021;12(1):4851. doi: 10.1038/s41467-021-24997-7, PMID 34381047.
Djamiatun K, Matug S, Prasetyo A, Wijayahadi N, Nugroho D, Muricata A. Modulate brain-CXCL10 expression during cerebral malaria phase. IOP Conf S Earth Environ Sci. 2017; 55.012034.DOI: 10.1088/1755-1315/55/1/012034.
Sulayman A, Djamiatun K-, Muniroh M. Effectivity of Annona muricata and artemisinin combined therapy on brain CXCL10 expression (study in Swiss mice during severe Plasmodium berghei Anka infection). J Biomed Transl Res. 2019;5(2):47-52. doi: 10.14710/jbtr.v5i2.4802.
Ioannidis LJ, Nie CQ, Ly A, Ryg-Cornejo V, Chiu CY, Hansen DS. Monocyte- and neutrophil-derived CXCL10 impairs efficient control of blood-stage malaria infection and promotes severe disease. J Immunol. 2016;196(3):1227-38. doi: 10.4049/jimmunol.1501562, PMID 26718341.
Campanella GS, Tager AM, El Khoury JK, Thomas SY, Abrazinski TA, Manice LA et al. Chemokine receptor Cxcr3 and its ligands CXCL9 and CXCL10 are required for the development of murine cerebral malaria. Proc Natl Acad Sci U S A. 2008;105(12):4814-9. doi: 10.1073/pnas.0801544105, PMID 18347328.
Miu J, Mitchell AJ, Müller M, Carter SL, Manders PM, McQuillan JA et al. Chemokine gene Expression during fatal murine cerebral malaria and protection due to Cxcr3 deficiency. J Immunol. 2008;180(2):1217-30. doi: 10.4049/jimmunol.180.2.1217, PMID 18178862.
Nie CQ, Bernard NJ, Norman MU, Amante FH, Lundie RJ, Crabb BS et al. Ip-10-Mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLOS Pathog. 2009;5(4):e1000369. doi: 10.1371/journal.ppat.1000369, PMID 19343215.
Wilson NO, Solomon W, Anderson L, Patrickson J, Pitts S, Bond V et al. Pharmacologic inhibition of CXCL10 in combination with antimalarial therapy eliminates mortality associated with murine model of cerebral malaria. PLOS ONE. 2013;8(4):e60898. doi: 10.1371/journal.pone.0060898, PMID 23630573.
Pais TF, Ali H, Moreira da Silva J, Duarte N, Neres R, Chhatbar C et al. Brain endothelial Sting1 activation by Plasmodium-sequestered heme promotes cerebral malaria via Type I Ifn response. Proc Natl Acad Sci U S A. 2022;119(36):e2206327119.DOI: doi. doi: 10.1073/pnas.2206327119, PMID 36037380.
Albakoush AAI, Djamiatun K. Spleen-CXCL10-expression of Plasmodium berghei Anka-infected-Swiss mice treated with Annona muricata. Int J Novel Res Dev. 2023;8(7).
Djamiatun K, Abdulaziz KMA, Naamat WFA, Kristina TN, Nugroho D. Annona muricata associated with increase Phytohemaglutinin induced spleen IL-10 production of Swiss mice during cerebral malaria phase. Adv Sci Lett. 2017;23(4):3344-8. doi: 10.1166/asl.2017.9161.
Djamiatun K, Naamat WFA, Dharmana E, Wijayahadi N, Nugroho D. Reduce spleen-IFN-gamma correlated with CXCL9 levels during cerebral malaria phase in Annona muricata-treated Swiss mouse study. Adv Sci Lett. 2017;23(4):3380-4. doi: 10.1166/asl.2017.9179.
Minigo G, Woodberry T, Piera KA, Salwati E, Tjitra E, Kenangalem E et al. Parasite-dependent expansion of Tnf receptor Ii–positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLOS Pathog. 2009;5(4):e1000402. doi: 10.1371/journal.ppat.1000402, PMID 19390618.
Mandala WL, Msefula CL, Gondwe EN, Gilchrist JJ, Graham SM, Pensulo P et al. Lymphocyte perturbations in Malawian children with severe and uncomplicated malaria. Clin Vaccine Immunol. 2015;23(2):95-103. doi: 10.1128/CVI.00564-15, PMID 26581890.
Del Portillo HA, Ferrer MCO, Brugat T, Martín-Jaular L, Langhorne J, Lacerda MVG. The role of the spleen in malaria. Cell Microbiol. 2012;14(3):343-55. doi: 10.1111/j.1462-5822.2011.01741.x, PMID 22188297.
Gómez-Pérez GP, van Bruggen R, Grobusch MP, Dobaño C. Plasmodium falciparum malaria and invasive bacterial co-infection in young African children: the dysfunctional spleen hypothesis. Malar J. 2014;13:335. doi: 10.1186/1475-2875-13-335, PMID 25158979.
Ocaña-Morgner C, Mota MM, Rodriguez A. Malaria blood stage suppression of liver stage immunity by dendritic cells. J Exp Med. 2003;197(2):143-51. doi: 10.1084/jem.20021072, PMID 12538654.
Roux CM, Butler BP, Chau JY, Paixão TA, Cheung KW, Santos RL et al. Both hemolytic anemia and malaria parasite-specific factors increase susceptibility to nontyphoidalSalmonella entericaSerovar typhimurium infection in mice. Infect Immun. 2010;78(4):1520-7. doi: 10.1128/IAI.00887-09, PMID 20100860.
Krücken J, Dkhil MA, Braun JV, Schroetel RMU, El‐Khadragy MF, Carmeliet P et al. Testosterone suppresses protective responses of the liver to blood-stage malaria. Infect Immun. 2005;73(1):436-43. doi: 10.1128/IAI.73.1.436-443.2005, PMID 15618182.
Hommel B, Galloula A, Simon A, Buffet P. Hyposplenism revealed by Plasmodium malariae infection. Malar J. 2013;12:271. doi: 10.1186/1475-2875-12-271, PMID 23914838.
Mubaraki MA, Hafiz TA, Dkhil MA, Al-Quraishy S. Beneficial effect of Punica granatum Peel extract on murine malaria-induced spleen injury. BMC Complement Altern Med. 2016;16:221. doi: 10.1186/s12906-016-1207-9, PMID 27422638.
Fu Y, Ding Y, Wang Q, Zhu F, Tan Y, Lu X et al. Blood-stage malaria parasites manipulate host innate immune responses through the induction of sFGL2. Sci Adv. 2020;6(9):eaay9269. doi: 10.1126/sciadv.aay9269, PMID 32133407.
Pouniotis DS, Proudfoot O, Bogdanoska V, Apostolopoulos V, Fifis T, Plebanski M. Dendritic cells induce immunity and long-lasting protection against blood-stage malaria despite an in vitro parasite-induced maturation defect. Infect Immun. 2004;72(9):5331-9. doi: 10.1128/IAI.72.9.5331-5339.2004, PMID 15322030.
Urban BC, Ferguson DJP, Pain A, Willcox N, Plebanski M, Austyn JM et al. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature. 1999;400(6739):73-7. doi: 10.1038/21900, PMID 10403251.
Urban BC, Hien TT, Day NPJ, Phu NH, Roberts R, Pongponratn E et al. Plasmodium falciparumMalaria causes specific patterns of splenic architectural disorganization. Infect Immun. 2005. doi: 10.1128/iai.73.4.1986-1994.2005.
Hisaeda H, Tetsutani K, Imai T, Moriya C, Tu L, Hamano S et al., Coban C, Akira S, Takeda K, Yasutomo K, Torii M, and Himeno K, Malaria Parasites Require Tlr9 Signaling for Immune Evasion by Activating Regulatory T Cells. The Journal of Immunology, 2008.DOI: 10.4049.
Millington OR, Gibson VB, Rush CM, Zinselmeyer BH, Phillips RS, Garside P et al. Malaria impairs T cell clustering and immune priming despite normal Signal 1 from dendritic cells. PLOS Pathog. 2007;3(10):1380-7. doi: 10.1371/journal.ppat.0030143, PMID 17937497.
Skorokhod OA, Alessio M, Mordmüller B, Arese P, Schwarzer E. Hemozoin (Malarial Pigment) Inhibits Differentiation and Maturation of Human Monocyte-Derived Dendritic Cells: a Peroxisome Proliferator-Activated Receptor-γ-Mediated Effect. Journal of Immunology. 2004;173(6):4066-74. doi: 10.4049/jimmunol.173.6.4066.
Coban C, Ishii KJ, Kawai T, Hemmi H, Sato S, Uematsu S, Yamamoto M et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005. doi: 10.1084.
Djamiatun K-, Wirman R-, and Wijayahadi N-. Effect of combination Songga-wood-stem (Strychnos ligustrina Blume) and antimalaria-act on IL-10 production of malaria. 2022:2022.3. doi: 10.14710/jbtr.v1i1.13906.
Kumar R, Ng S, Engwerda C. The role of IL-10 in malaria: A double edged sword. Front Immunol. 2019:10.229. doi: 10.3389.
Abosalif KOA, Abdalla AE, Junaid K, Eltayeb LB, Ejaz H. The interleukin-10 family: major regulators of the immune response against Plasmodium falciparum infections. Saudi J Biol Sci. 2023.-103805;30(11):103805. doi: 10.1016/j.sjbs, PMID 37727525.
Surette FA, Guthmiller JJ, Li L, Sturtz AJ, Vijay R, Pope RL et al. Extrafollicular CD4 T cell-derived IL-10 functions rapidly and transiently to support anti-plasmodium humoral immunity. PLOS Pathog. 2021;17(2):e1009288. doi: 10.1371/journal.ppat.1009288: 0.1371. PMID 33529242.