Date Log
Submitted
May 2, 2022
Published
May 2, 2022
Design and Development of Biosurfactant induced Nanosponges using QBD approach. Part-I
Corresponding Author(s) : Nikunj R Solanki
sonalpawar2501@gmail.com
International Journal of Allied Medical Sciences and Clinical Research,
Vol. 2021 No. 9 (4): 2021 Volume - 9 Issue - 4
Abstract
The objective of this research work was to formulate and develop a nanosponge delivery system comprised of the polymers viz. ?- Cyclodextrin, Chitosan and Hyaluronic acid using Biosurfactant (Rhamnolipid). The prepared nanosponges were optimized by Plackett Burman design and Box Behnken Design. The optimized batch of the Blank Carboxymethyl ? –Cyclodextrins Chitosan rhamnolipids coated with Hyaluronic acid Nanosponges (CCHBS/NS) had the particle size of 510±10 nm, PDI 0.22 ± 0.01 and Zeta Potential of - 30.8 ± 0.4mV. The optimized formulation was found to be stable for 6 months at real time stability conditions of 4°C±2°C and 25°C±2°C /60%±5% RH respectively..
Keywords
Nanosponges, Plackett Burman design, Box Behnken Design, Biosurfactant, carboxymethyl β- Cyclodextrin, Chitosan, QBD
Nikunj R Solanki, & Praful D Bharadia. (2022). Design and Development of Biosurfactant induced Nanosponges using QBD approach. Part-I. International Journal of Allied Medical Sciences and Clinical Research, 2021(9), 748–761. https://doi.org/10.61096/ijamscr.v2021.iss9.4.748-761
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
-
1. Vyas SP, Sihorkar V, Jain S. Mannosylated liposomes for bio-film targeting. Int J Pharm. 2007;330(1-2):6-13. doi: 10.1016/j.ijpharm.2006.08.034, PMID 16997519.
2. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol. 2008;68(1):223-40. doi: 10.1111/j.1365-2958.2008.06152.x, PMID 18312276.
3. Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286-98. doi: 10.3390/molecules20045286, PMID 25812150.
4. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39(5):649-69. doi: 10.1093/femsre/fuv015, PMID 25907113.
5. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. doi: 10.1016/j.ijantimicag.2009.12.011, PMID 20149602.
6. Jensen ET, Kharazmi A, Lam K, Costerton JW, Høiby N. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun. 1990;58(7):2383-5. doi: 10.1128/iai.58.7.2383-2385.1990, PMID 2114367.
7. Domenech M, Ramos-Sevillano E, Garc?a E, Moscoso M, Yuste J. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun. 2013;81(7):2606-15. doi: 10.1128/IAI.00491-13, PMID 23649097.
8. Chen LM, Xu YH, Zhou CL, Zhao J, Li CY, Wang R. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations. J Int Med Res. 2010;38(2):536-45. doi: 10.1177/147323001003800216, PMID 20515567.
9. Anwar H, Dasgupta MK, Costerton JW. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990;34(11):2043-6. doi: 10.1128/AAC.34.11.2043, PMID 2073094. 18 M. ARIF ET AL.
10. Ribeiro IA, Castro MF, Ribeiro MH. Sophorolipids: production, characterization and biologic activity in applications of microbial engineering. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA, editors. Applications of microbial engineering. Boca Raton: CRC Press Press; 2013a. p. 367-407.
11. Bharali P, Saikia JP, Ray A, Konwar BK. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Colloids Surf B Biointerfaces. 2013;103:502-9. doi: 10.1016/j.colsurfb.2012.10.064, PMID 23261573.
12. Silveira VAI, Nishio EK, Freitas CAUQ, Amador IR, Kobayashi RKT, Caretta T, Macedo F, Celligoi MAPC. Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatal Agric Biotechnol. 2019;21. doi: 10.1016/j.bcab.2019.101287, PMID 101287.
13. Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, Ribeiro IA. Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm. 2016;513(1-2):697-708. doi: 10.1016/j.ijpharm.2016.09.074, PMID 27693709.
14. Marangon CA, Martins VCA, Ling MH, Melo CC, Plepis AMG, Meyer RL, Nitschke M. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces. 2020 Feb 5;12(5):5488-99. doi: 10.1021/acsami.9b19253, PMID 31927982.
15. Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA, Capan Y. Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci. 2013;102(10):3748-61. doi: 10.1002/jps.23686, PMID 23918313.
16. Sahu AK, Jain V. Screening of process variables using Plackett–Burman design in the fabrication of gedunin-loaded liposomes. Artif Cells Nanomed Biotechnol. 2017;45(5):1011-22. doi: 10.1080/21691401.2016.1200057, PMID 27917681.
17. Sah AK, Suresh PK. Loteprednol etabonate nanoparticles: optimization via Box-Behnken design response surface methodology and physicochemical characterization. Curr Drug Deliv. 2017;14(5):676-89. doi: 10.2174/1567201813666160801125235, PMID 27480117.
References
1. Vyas SP, Sihorkar V, Jain S. Mannosylated liposomes for bio-film targeting. Int J Pharm. 2007;330(1-2):6-13. doi: 10.1016/j.ijpharm.2006.08.034, PMID 16997519.
2. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol. 2008;68(1):223-40. doi: 10.1111/j.1365-2958.2008.06152.x, PMID 18312276.
3. Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286-98. doi: 10.3390/molecules20045286, PMID 25812150.
4. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39(5):649-69. doi: 10.1093/femsre/fuv015, PMID 25907113.
5. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. doi: 10.1016/j.ijantimicag.2009.12.011, PMID 20149602.
6. Jensen ET, Kharazmi A, Lam K, Costerton JW, Høiby N. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun. 1990;58(7):2383-5. doi: 10.1128/iai.58.7.2383-2385.1990, PMID 2114367.
7. Domenech M, Ramos-Sevillano E, Garc?a E, Moscoso M, Yuste J. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun. 2013;81(7):2606-15. doi: 10.1128/IAI.00491-13, PMID 23649097.
8. Chen LM, Xu YH, Zhou CL, Zhao J, Li CY, Wang R. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations. J Int Med Res. 2010;38(2):536-45. doi: 10.1177/147323001003800216, PMID 20515567.
9. Anwar H, Dasgupta MK, Costerton JW. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990;34(11):2043-6. doi: 10.1128/AAC.34.11.2043, PMID 2073094. 18 M. ARIF ET AL.
10. Ribeiro IA, Castro MF, Ribeiro MH. Sophorolipids: production, characterization and biologic activity in applications of microbial engineering. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA, editors. Applications of microbial engineering. Boca Raton: CRC Press Press; 2013a. p. 367-407.
11. Bharali P, Saikia JP, Ray A, Konwar BK. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Colloids Surf B Biointerfaces. 2013;103:502-9. doi: 10.1016/j.colsurfb.2012.10.064, PMID 23261573.
12. Silveira VAI, Nishio EK, Freitas CAUQ, Amador IR, Kobayashi RKT, Caretta T, Macedo F, Celligoi MAPC. Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatal Agric Biotechnol. 2019;21. doi: 10.1016/j.bcab.2019.101287, PMID 101287.
13. Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, Ribeiro IA. Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm. 2016;513(1-2):697-708. doi: 10.1016/j.ijpharm.2016.09.074, PMID 27693709.
14. Marangon CA, Martins VCA, Ling MH, Melo CC, Plepis AMG, Meyer RL, Nitschke M. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces. 2020 Feb 5;12(5):5488-99. doi: 10.1021/acsami.9b19253, PMID 31927982.
15. Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA, Capan Y. Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci. 2013;102(10):3748-61. doi: 10.1002/jps.23686, PMID 23918313.
16. Sahu AK, Jain V. Screening of process variables using Plackett–Burman design in the fabrication of gedunin-loaded liposomes. Artif Cells Nanomed Biotechnol. 2017;45(5):1011-22. doi: 10.1080/21691401.2016.1200057, PMID 27917681.
17. Sah AK, Suresh PK. Loteprednol etabonate nanoparticles: optimization via Box-Behnken design response surface methodology and physicochemical characterization. Curr Drug Deliv. 2017;14(5):676-89. doi: 10.2174/1567201813666160801125235, PMID 27480117.
2. Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol. 2008;68(1):223-40. doi: 10.1111/j.1365-2958.2008.06152.x, PMID 18312276.
3. Penesyan A, Gillings M, Paulsen IT. Antibiotic discovery: combatting bacterial resistance in cells and in biofilm communities. Molecules. 2015;20(4):5286-98. doi: 10.3390/molecules20045286, PMID 25812150.
4. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39(5):649-69. doi: 10.1093/femsre/fuv015, PMID 25907113.
5. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents. 2010;35(4):322-32. doi: 10.1016/j.ijantimicag.2009.12.011, PMID 20149602.
6. Jensen ET, Kharazmi A, Lam K, Costerton JW, Høiby N. Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun. 1990;58(7):2383-5. doi: 10.1128/iai.58.7.2383-2385.1990, PMID 2114367.
7. Domenech M, Ramos-Sevillano E, Garc?a E, Moscoso M, Yuste J. Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun. 2013;81(7):2606-15. doi: 10.1128/IAI.00491-13, PMID 23649097.
8. Chen LM, Xu YH, Zhou CL, Zhao J, Li CY, Wang R. Overexpression of CDR1 and CDR2 genes plays an important role in fluconazole resistance in Candida albicans with G487T and T916C mutations. J Int Med Res. 2010;38(2):536-45. doi: 10.1177/147323001003800216, PMID 20515567.
9. Anwar H, Dasgupta MK, Costerton JW. Testing the susceptibility of bacteria in biofilms to antibacterial agents. Antimicrob Agents Chemother. 1990;34(11):2043-6. doi: 10.1128/AAC.34.11.2043, PMID 2073094. 18 M. ARIF ET AL.
10. Ribeiro IA, Castro MF, Ribeiro MH. Sophorolipids: production, characterization and biologic activity in applications of microbial engineering. In: Gupta VK, Schmoll M, Maki M, Tuohy M, Mazutti MA, editors. Applications of microbial engineering. Boca Raton: CRC Press Press; 2013a. p. 367-407.
11. Bharali P, Saikia JP, Ray A, Konwar BK. Rhamnolipid (RL) from Pseudomonas aeruginosa OBP1: a novel chemotaxis and antibacterial agent. Colloids Surf B Biointerfaces. 2013;103:502-9. doi: 10.1016/j.colsurfb.2012.10.064, PMID 23261573.
12. Silveira VAI, Nishio EK, Freitas CAUQ, Amador IR, Kobayashi RKT, Caretta T, Macedo F, Celligoi MAPC. Production and antimicrobial activity of sophorolipid against Clostridium perfringens and Campylobacter jejuni and their additive interaction with lactic acid. Biocatal Agric Biotechnol. 2019;21. doi: 10.1016/j.bcab.2019.101287, PMID 101287.
13. Pontes C, Alves M, Santos C, Ribeiro MH, Gonçalves L, Bettencourt AF, Ribeiro IA. Can Sophorolipids prevent biofilm formation on silicone catheter tubes? Int J Pharm. 2016;513(1-2):697-708. doi: 10.1016/j.ijpharm.2016.09.074, PMID 27693709.
14. Marangon CA, Martins VCA, Ling MH, Melo CC, Plepis AMG, Meyer RL, Nitschke M. Combination of rhamnolipid and chitosan in nanoparticles boosts their antimicrobial efficacy. ACS Appl Mater Interfaces. 2020 Feb 5;12(5):5488-99. doi: 10.1021/acsami.9b19253, PMID 31927982.
15. Yerlikaya F, Ozgen A, Vural I, Guven O, Karaagaoglu E, Khan MA, Capan Y. Development and evaluation of paclitaxel nanoparticles using a quality-by-design approach. J Pharm Sci. 2013;102(10):3748-61. doi: 10.1002/jps.23686, PMID 23918313.
16. Sahu AK, Jain V. Screening of process variables using Plackett–Burman design in the fabrication of gedunin-loaded liposomes. Artif Cells Nanomed Biotechnol. 2017;45(5):1011-22. doi: 10.1080/21691401.2016.1200057, PMID 27917681.
17. Sah AK, Suresh PK. Loteprednol etabonate nanoparticles: optimization via Box-Behnken design response surface methodology and physicochemical characterization. Curr Drug Deliv. 2017;14(5):676-89. doi: 10.2174/1567201813666160801125235, PMID 27480117.