Date Log
Submitted
January 17, 2022
Published
January 17, 2022
Design and Development of Multi drug loaded and Dual Drug loaded Nanostructured Drug Delivery Carriers (NSDDS)
Corresponding Author(s) : Nikunj R Solanki
nikunj_nikee@gmail.com
International Journal of Allied Medical Sciences and Clinical Research,
Vol. 10 No. 1 (2022): 2022 Volume - 10 Issue - 1
Abstract
The objective of this research work was to formulate and develop a nanosponge delivery system comprised of the polymers viz. ?- Cyclodextrin, Chitosan and Hyaluronic acid using Ultrasound Assisted Synthesis. The prepared blank nanosponges were optimized by Box Behnken Design. The optimized batch of the Blank ?- Cyclodextrin -Chitosan crosslinked Hyaluronic acid Nanosponges (CCHNSs) had the particle size of 0.326 nm, PDI 0.474 and Zeta Potential of 30.8mV. The prepared Blank CCHNS were co-loaded with antitubercular drugs viz. RIF, PYZ and IBU to obtain the Single and Multi drug loaded CCHNS. Additionally, the Blank CCHNS were also loaded for anticancer drugs viz. Curcumin and DOX. The prepared CCHNS were evaluated for loading and entrapment efficiency. The optimized formulation was found to be stable for 6 months at real time stability conditions of 4°C±2°C and 25°C±2°C /60%±5% RH respectively. This engineered dry powder could be used as an enhanced therapeutic alternative of the standard oral antitubercular and anticancer regimen.
Keywords
Nanosponges
Anticancer
Antitubercular
Pulmonary
Dry powder Inhaler
1.
Nikunj R Solanki, Dr. Praful D Bharadia. Design and Development of Multi drug loaded and Dual Drug loaded Nanostructured Drug Delivery Carriers (NSDDS). Int. J. of Allied Med. Sci. and Clin. Res. [Internet]. 2022 Jan. 17 [cited 2025 Mar. 24];10(1):27-40. Available from: https://ijamscr.com/ijamscr/article/view/1136
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
References
-
1. Naderinezhad, S., Amoabediny, G., &Haghiralsadat, F. (2017). Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers formultidrug-resistant cancers. RSC Advances, 7(48), 30008–30019. doi:10.1039/c7ra01736g
2. Passmore, J. S., Lukey, P. T., &Ress, S. R. (2001). The human macrophage cell line U937 asan in vitro model for selective evaluation of mycobacterial antigen-specific cytotoxic T-cellfunction. Immunology, 102(2), 146–156. doi:10.1046/j.1365-2567.2001.01164.
3. Argenziano,M.,Gigliotti,C.L.,Clemente,N.,Boggio,E.,Ferrara,B.,Trotta,F.,Dianzani, C. (2019). Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in InVitro and in Mice Bearing Breast Tumor Models. Cancers, 12(1),162.doi:10.3390/cancers12010162
4. Clemente,N.,Argenziano,M.,Gigliotti,C.L.,Ferrara,B.,Boggio,E.,Chiocchetti,A.,Dianzani,C.(2019).Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesisin Melanoma Cell Models. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00776
5. Merchant,Z., Taylor, K.M.G., Stapleton,P., Razak,S.A., Kunda,N., Alfagih,I. omavarapu,S.(2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816–829. doi:10.1016/j.ejpb.2014.09.005
6. Pushpalatha, R., Selvamuthukumar, S., &Kilimozhi, D. (2018). Cross-linked, cyclodextrin- based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. Journal of Drug Delivery Science and Technology, 45, 45– 53. doi:10.1016/j.jddst.2018.03.004
7. Boiteau et al 2019. EP 3 148 600 B1. Cyclodextrin-grafted hyaluronic acid crosslinked with dextran and uses thereof.
8. Sakulwech, S., Lourith, N., Ruktanonchai, U., &Kanlayavattanakul, M. (2018). Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian Journal of Pharmaceutical Sciences. doi:10.1016/j.ajps.2018.05.006
9. Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R.; Tumbiolo, S.; Bertinetti, L.; Coluccia, S. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 201–211.
10. Clemente, N., Argenziano, M., Gigliotti, C. L., Ferrara, B., Boggio, E., Chiocchetti, A., … Dianzani, C. (2019). Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00776
11. Omar, S. M., Ibrahim, F., & Ismail, A. (2020). Formulation and Evaluation of Cyclodextrin- Based Nanosponges of Griseofulvin as Pediatric Oral Liquid Dosage Form for Enhancing Bioavailability and Masking Bitter Taste. Saudi Pharmaceutical Journal. doi:10.1016/j.jsps.2020.01.016
12. Argenziano, M., Gigliotti, C. L., Clemente, N., Boggio, E., Ferrara, B., Trotta, F., Dianzani, C. (2020). Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 12(1), 162. doi:10.3390/cancers12010162
13. Rao, M., Bajaj, A., Khole, I., Munjapara, G., Trotta, F., 2013. In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 77 (1–4), 135–145.
14. Kalam, M. A. (2016). Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 89, 127–136. doi:10.1016/j.ijbiomac.2016.04.070
15. Mohandas, A., Anisha, B. S., Chennazhi, K. P., & Jayakumar, R. (2015). Chitosan– hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancingangiogenesis in wounds. Colloids and Surfaces B: Biointerfaces, 127, 105– 113. doi:10.1016/j.colsurfb.2015.01.024
16. Brunaugh, A. D., Wu, T., Kanapuram, S. R., & Smyth, H. D. C. (2019). Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Molecular Pharmaceutics. doi:10.1021/acs.molpharmaceut.9b00496
17. Shetty, N., Park, H., Zemlyanov, D., Mangal, S., Bhujbal, S., & Zhou, Q. (Tony). (2018). Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. International Journal of Pharmaceutics, 544(1), 222–234. doi:10.1016/j.ijpharm.2018.04.034
18. Singh, M., Sasi, P., Rai, G., Gupta, V. H., Amarapurkar, D., &Wangikar, P. P. (2010). Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Medicinal Chemistry Research, 20(9), 1611–1615. doi:10.1007/s00044-010-9405-3
19. Zheng, W., Li, Y., Du, J., & Yin, Z. (2014). Fabrication of Biocompatible and Tumor- Targeting Hyaluronan Nanospheres by a Modified Desolvation Method. Journal of Pharmaceutical Sciences, 103(5), 1529–1537. doi:10.1002/jps.23924
20. Kaur, G., Mehta, S. K., Kumar, S., Bhanjana, G., & Dilbaghi, N. (2015). Coencapsulation of Hydrophobic and Hydrophilic Antituberculosis Drugs in Synergistic Brij 96 Microemulsions: A Biophysical Characterization. Journal of Pharmaceutical Sciences, 104(7), 2203– 2212. doi:10.1002/jps.24469
21. Donnellan, S., Stone, V., Johnston, H., Giardiello, M., Owen, A., Rannard, S., Stevenson, K. (2017). Intracellular delivery of nano-formulated antituberculosis drugs enhances bactericidal activity. Journal of Interdisciplinary Nanomedicine, 2(3), 146– 156. doi:10.1002/jin2.27
22. Merchant, Z., Taylor, K. M. G., Stapleton, P., Razak, S. A., Kunda, N., Alfagih, I., omavarapu, S. (2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816–829. doi:10.1016/j.ejpb.2014.09.005
23. Tewes, F., Brillault, J., Couet, W., & Olivier, J.-C. (2008). Formulation of rifampicin– cyclodextrin complexes for lung nebulization. Journal of Controlled Release, 129(2), 93– 99. doi:10.1016/j.jconrel.2008.04.007
24. Nokhodchi, A., &Larhrib, H. (2013). Overcoming the undesirable properties of dry-powder inhalers with novel engineered mannitol particles. Therapeutic Delivery, 4(8), 879 -882.
References
1. Naderinezhad, S., Amoabediny, G., &Haghiralsadat, F. (2017). Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers formultidrug-resistant cancers. RSC Advances, 7(48), 30008–30019. doi:10.1039/c7ra01736g
2. Passmore, J. S., Lukey, P. T., &Ress, S. R. (2001). The human macrophage cell line U937 asan in vitro model for selective evaluation of mycobacterial antigen-specific cytotoxic T-cellfunction. Immunology, 102(2), 146–156. doi:10.1046/j.1365-2567.2001.01164.
3. Argenziano,M.,Gigliotti,C.L.,Clemente,N.,Boggio,E.,Ferrara,B.,Trotta,F.,Dianzani, C. (2019). Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in InVitro and in Mice Bearing Breast Tumor Models. Cancers, 12(1),162.doi:10.3390/cancers12010162
4. Clemente,N.,Argenziano,M.,Gigliotti,C.L.,Ferrara,B.,Boggio,E.,Chiocchetti,A.,Dianzani,C.(2019).Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesisin Melanoma Cell Models. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00776
5. Merchant,Z., Taylor, K.M.G., Stapleton,P., Razak,S.A., Kunda,N., Alfagih,I. omavarapu,S.(2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816–829. doi:10.1016/j.ejpb.2014.09.005
6. Pushpalatha, R., Selvamuthukumar, S., &Kilimozhi, D. (2018). Cross-linked, cyclodextrin- based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. Journal of Drug Delivery Science and Technology, 45, 45– 53. doi:10.1016/j.jddst.2018.03.004
7. Boiteau et al 2019. EP 3 148 600 B1. Cyclodextrin-grafted hyaluronic acid crosslinked with dextran and uses thereof.
8. Sakulwech, S., Lourith, N., Ruktanonchai, U., &Kanlayavattanakul, M. (2018). Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian Journal of Pharmaceutical Sciences. doi:10.1016/j.ajps.2018.05.006
9. Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R.; Tumbiolo, S.; Bertinetti, L.; Coluccia, S. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 201–211.
10. Clemente, N., Argenziano, M., Gigliotti, C. L., Ferrara, B., Boggio, E., Chiocchetti, A., … Dianzani, C. (2019). Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00776
11. Omar, S. M., Ibrahim, F., & Ismail, A. (2020). Formulation and Evaluation of Cyclodextrin- Based Nanosponges of Griseofulvin as Pediatric Oral Liquid Dosage Form for Enhancing Bioavailability and Masking Bitter Taste. Saudi Pharmaceutical Journal. doi:10.1016/j.jsps.2020.01.016
12. Argenziano, M., Gigliotti, C. L., Clemente, N., Boggio, E., Ferrara, B., Trotta, F., Dianzani, C. (2020). Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 12(1), 162. doi:10.3390/cancers12010162
13. Rao, M., Bajaj, A., Khole, I., Munjapara, G., Trotta, F., 2013. In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 77 (1–4), 135–145.
14. Kalam, M. A. (2016). Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 89, 127–136. doi:10.1016/j.ijbiomac.2016.04.070
15. Mohandas, A., Anisha, B. S., Chennazhi, K. P., & Jayakumar, R. (2015). Chitosan– hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancingangiogenesis in wounds. Colloids and Surfaces B: Biointerfaces, 127, 105– 113. doi:10.1016/j.colsurfb.2015.01.024
16. Brunaugh, A. D., Wu, T., Kanapuram, S. R., & Smyth, H. D. C. (2019). Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Molecular Pharmaceutics. doi:10.1021/acs.molpharmaceut.9b00496
17. Shetty, N., Park, H., Zemlyanov, D., Mangal, S., Bhujbal, S., & Zhou, Q. (Tony). (2018). Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. International Journal of Pharmaceutics, 544(1), 222–234. doi:10.1016/j.ijpharm.2018.04.034
18. Singh, M., Sasi, P., Rai, G., Gupta, V. H., Amarapurkar, D., &Wangikar, P. P. (2010). Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Medicinal Chemistry Research, 20(9), 1611–1615. doi:10.1007/s00044-010-9405-3
19. Zheng, W., Li, Y., Du, J., & Yin, Z. (2014). Fabrication of Biocompatible and Tumor- Targeting Hyaluronan Nanospheres by a Modified Desolvation Method. Journal of Pharmaceutical Sciences, 103(5), 1529–1537. doi:10.1002/jps.23924
20. Kaur, G., Mehta, S. K., Kumar, S., Bhanjana, G., & Dilbaghi, N. (2015). Coencapsulation of Hydrophobic and Hydrophilic Antituberculosis Drugs in Synergistic Brij 96 Microemulsions: A Biophysical Characterization. Journal of Pharmaceutical Sciences, 104(7), 2203– 2212. doi:10.1002/jps.24469
21. Donnellan, S., Stone, V., Johnston, H., Giardiello, M., Owen, A., Rannard, S., Stevenson, K. (2017). Intracellular delivery of nano-formulated antituberculosis drugs enhances bactericidal activity. Journal of Interdisciplinary Nanomedicine, 2(3), 146– 156. doi:10.1002/jin2.27
22. Merchant, Z., Taylor, K. M. G., Stapleton, P., Razak, S. A., Kunda, N., Alfagih, I., omavarapu, S. (2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816–829. doi:10.1016/j.ejpb.2014.09.005
23. Tewes, F., Brillault, J., Couet, W., & Olivier, J.-C. (2008). Formulation of rifampicin– cyclodextrin complexes for lung nebulization. Journal of Controlled Release, 129(2), 93– 99. doi:10.1016/j.jconrel.2008.04.007
24. Nokhodchi, A., &Larhrib, H. (2013). Overcoming the undesirable properties of dry-powder inhalers with novel engineered mannitol particles. Therapeutic Delivery, 4(8), 879 -882.
2. Passmore, J. S., Lukey, P. T., &Ress, S. R. (2001). The human macrophage cell line U937 asan in vitro model for selective evaluation of mycobacterial antigen-specific cytotoxic T-cellfunction. Immunology, 102(2), 146–156. doi:10.1046/j.1365-2567.2001.01164.
3. Argenziano,M.,Gigliotti,C.L.,Clemente,N.,Boggio,E.,Ferrara,B.,Trotta,F.,Dianzani, C. (2019). Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in InVitro and in Mice Bearing Breast Tumor Models. Cancers, 12(1),162.doi:10.3390/cancers12010162
4. Clemente,N.,Argenziano,M.,Gigliotti,C.L.,Ferrara,B.,Boggio,E.,Chiocchetti,A.,Dianzani,C.(2019).Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesisin Melanoma Cell Models. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00776
5. Merchant,Z., Taylor, K.M.G., Stapleton,P., Razak,S.A., Kunda,N., Alfagih,I. omavarapu,S.(2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816–829. doi:10.1016/j.ejpb.2014.09.005
6. Pushpalatha, R., Selvamuthukumar, S., &Kilimozhi, D. (2018). Cross-linked, cyclodextrin- based nanosponges for curcumin delivery - Physicochemical characterization, drug release, stability and cytotoxicity. Journal of Drug Delivery Science and Technology, 45, 45– 53. doi:10.1016/j.jddst.2018.03.004
7. Boiteau et al 2019. EP 3 148 600 B1. Cyclodextrin-grafted hyaluronic acid crosslinked with dextran and uses thereof.
8. Sakulwech, S., Lourith, N., Ruktanonchai, U., &Kanlayavattanakul, M. (2018). Preparation and characterization of nanoparticles from quaternized cyclodextrin-grafted chitosan associated with hyaluronic acid for cosmetics. Asian Journal of Pharmaceutical Sciences. doi:10.1016/j.ajps.2018.05.006
9. Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R.; Tumbiolo, S.; Bertinetti, L.; Coluccia, S. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 201–211.
10. Clemente, N., Argenziano, M., Gigliotti, C. L., Ferrara, B., Boggio, E., Chiocchetti, A., … Dianzani, C. (2019). Paclitaxel-Loaded Nanosponges Inhibit Growth and Angiogenesis in Melanoma Cell Models. Frontiers in Pharmacology, 10. doi:10.3389/fphar.2019.00776
11. Omar, S. M., Ibrahim, F., & Ismail, A. (2020). Formulation and Evaluation of Cyclodextrin- Based Nanosponges of Griseofulvin as Pediatric Oral Liquid Dosage Form for Enhancing Bioavailability and Masking Bitter Taste. Saudi Pharmaceutical Journal. doi:10.1016/j.jsps.2020.01.016
12. Argenziano, M., Gigliotti, C. L., Clemente, N., Boggio, E., Ferrara, B., Trotta, F., Dianzani, C. (2020). Improvement in the Anti-Tumor Efficacy of Doxorubicin Nanosponges in In Vitro and in Mice Bearing Breast Tumor Models. Cancers, 12(1), 162. doi:10.3390/cancers12010162
13. Rao, M., Bajaj, A., Khole, I., Munjapara, G., Trotta, F., 2013. In vitro and in vivo evaluation of b-cyclodextrin-based nanosponges of telmisartan. J. Incl. Phenom. Macrocycl. Chem. 77 (1–4), 135–145.
14. Kalam, M. A. (2016). Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone. International Journal of Biological Macromolecules, 89, 127–136. doi:10.1016/j.ijbiomac.2016.04.070
15. Mohandas, A., Anisha, B. S., Chennazhi, K. P., & Jayakumar, R. (2015). Chitosan– hyaluronic acid/VEGF loaded fibrin nanoparticles composite sponges for enhancingangiogenesis in wounds. Colloids and Surfaces B: Biointerfaces, 127, 105– 113. doi:10.1016/j.colsurfb.2015.01.024
16. Brunaugh, A. D., Wu, T., Kanapuram, S. R., & Smyth, H. D. C. (2019). Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Molecular Pharmaceutics. doi:10.1021/acs.molpharmaceut.9b00496
17. Shetty, N., Park, H., Zemlyanov, D., Mangal, S., Bhujbal, S., & Zhou, Q. (Tony). (2018). Influence of excipients on physical and aerosolization stability of spray dried high-dose powder formulations for inhalation. International Journal of Pharmaceutics, 544(1), 222–234. doi:10.1016/j.ijpharm.2018.04.034
18. Singh, M., Sasi, P., Rai, G., Gupta, V. H., Amarapurkar, D., &Wangikar, P. P. (2010). Studies on toxicity of antitubercular drugs namely isoniazid, rifampicin, and pyrazinamide in an in vitro model of HepG2 cell line. Medicinal Chemistry Research, 20(9), 1611–1615. doi:10.1007/s00044-010-9405-3
19. Zheng, W., Li, Y., Du, J., & Yin, Z. (2014). Fabrication of Biocompatible and Tumor- Targeting Hyaluronan Nanospheres by a Modified Desolvation Method. Journal of Pharmaceutical Sciences, 103(5), 1529–1537. doi:10.1002/jps.23924
20. Kaur, G., Mehta, S. K., Kumar, S., Bhanjana, G., & Dilbaghi, N. (2015). Coencapsulation of Hydrophobic and Hydrophilic Antituberculosis Drugs in Synergistic Brij 96 Microemulsions: A Biophysical Characterization. Journal of Pharmaceutical Sciences, 104(7), 2203– 2212. doi:10.1002/jps.24469
21. Donnellan, S., Stone, V., Johnston, H., Giardiello, M., Owen, A., Rannard, S., Stevenson, K. (2017). Intracellular delivery of nano-formulated antituberculosis drugs enhances bactericidal activity. Journal of Interdisciplinary Nanomedicine, 2(3), 146– 156. doi:10.1002/jin2.27
22. Merchant, Z., Taylor, K. M. G., Stapleton, P., Razak, S. A., Kunda, N., Alfagih, I., omavarapu, S. (2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816–829. doi:10.1016/j.ejpb.2014.09.005
23. Tewes, F., Brillault, J., Couet, W., & Olivier, J.-C. (2008). Formulation of rifampicin– cyclodextrin complexes for lung nebulization. Journal of Controlled Release, 129(2), 93– 99. doi:10.1016/j.jconrel.2008.04.007
24. Nokhodchi, A., &Larhrib, H. (2013). Overcoming the undesirable properties of dry-powder inhalers with novel engineered mannitol particles. Therapeutic Delivery, 4(8), 879 -882.