

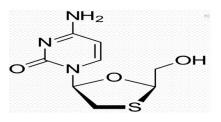
International Journal of Allied Medical Sciences and Clinical Research (IJAMSCR)

IJAMSCR |Vol.11 | Issue 4 | Oct - Dec -2023 www.ijamscr.com DOI : https://doi.org/10.61096/ijamscr.v11.iss4.2023.444-452

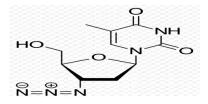
Research

Experimental design for novel in-vitro dissolution method validation for lamivudine-150mg and zidovudine-300mg film-coated tablets

K. Aishwarya*, K. Vamshikrishna, Mohd Omar, R.Rajareddy


Arya College of Pharmacy Sangareddy, Affiliated to Osmania University, Hyderabad, Telangana 502285

Corresponding Author:K. Aishwarya Email: aishwaryakada@gmail.com


Check for updates	Abstract
Published on: 26 Oct2023	The present study objective is Experimental Design for novel in- vitro Dissolution method validation for Lamivudine150 and Zidovudine 300
	mg film-coated tablets and its provide the direction to design and conduct
Published by:	performance test for the same and established documentary evidence through the test method defined in the study, its helps to demonstrate that the
DrSriram Publications	chromatographic analytical methods for determination of dissolution in
	Lamivudine/Zidovudine 150 mg/300 mg film-coated tablets Films coating tablet will yield consistent, reliable and reproducible results within in the pre-
2023 All rights reserved.	determined acceptance criteriaThe active ingredient Lamivudine and
	Zidovudine and Inactive ingredients include microcrystalline cellulose, sodium starch glycolate, colloidal silicon dioxide, povidone, magnesium stearate, and
BY	opadry white (composed of Hydroxy Propyl methylcellulose
Creative Commons	2910/Hypromellose 5cP, Titanium dioxide, and Polyethylene glycol 400).
Attribution 4.0 International License.	Keywords: Experimental design, Lamivudine, Zidovudine, HPMC, PEG
	400.

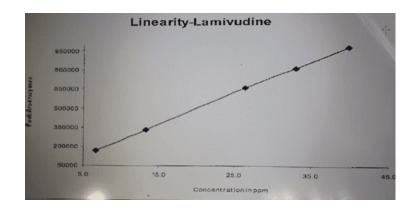
INTRODUCTION^{1,2}

Lamivudine is a prescription nucleoside reverse transcriptase inhibitor (NRTI) that is used in combination with other drugs as antiviral treatment for human immunodeficiency virus type-1 (HIV-1) and as aimmunotherapy for hepatitis B virus (HBV)

Zidovudine is used along with other medications to treat human immunodeficiency virus (HIV) **infection**. Zidovudine is given to HIV-positive pregnant women to reduce the chance of passing the infection to the baby. Zidovudine is in a class of medications called nucleoside reverse transcriptase inhibitors (NRTIs).

Experimental design

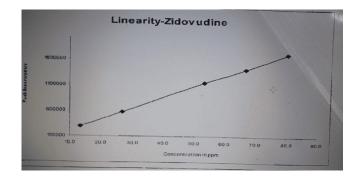
To conduct the method validation of chromatographic method for the dissolution of Zidovudine USP 300 mg and Lamivudine USP in Specification not less than 80% in 30 minutes. Analytical method validation for dissolution test are carried out by considering following analytical parameter: Specificity and System Suitability, Linearity and RangePrecision, System Precision, Method Precision, Intermediate Precision- Ruggedness, Analyst to Analyst, Stability of standard and analyte solutionAccuracyRobustnessSolution Stability


Equipment and Instrument: Dissolution Apparatus: *Model:* Lab India with Auto samplerInstrument *number:* QC/DISO/004**HPLC**Model: WatersInstrument *number:* QC/HPLC/023 **Analytical Balance**Model: MettlerInstrument *number:* QC/BAL/002, **Standards:** *Lamivudine* USP and Zidovudine *USP which* has purity 99.99 %**Solvent and Chemicals Used during analysis**HPLC and analytical grade materialsAcetonitrileAmmonia AcetatePurified water

METHODOLOGY

Standard Preparation:Weight accurately about 25 mg of Lamivudine reference standard and 32.5 mg of Zidovudine reference standard into a 50 ml volumetric flask and dissolves with 15ml diluents. Sonicate at 37.0 ± 0.5 o C for 10 minute. Dilute to the mark with diluents. Dilute 10 ml of this solution to 100ml diluents Inject 10 μ l the standard solution in the range of 20 % and 120 % 6 times and other levels in duplicate. Plot a graph of concentration against the peak response and calculate the linearity regression coefficient, % Y-Intercept, residual sum of squares and % RSD of 20% and 120 % level for peak area responses.

Acceptances Criteria:Correlation coefficient shall not be less than 0.99% Y intercept shall be between ± 2.0 , % RSD of peak area response area Reponses of 20% and 120% level shall be NMT 2.0


	Lamivudine				
Level	Concentration-ppm	Area	% RSD	Statistical Analysis	
		Average			
L1	6.7	165164	0.78	SLOPE	24087.0520
				Y-Intercept	6310.155
L2	13.3	323529	NA	% -Intercept	0.78
L3	26.7	656227	NA	Correlation	0.99999
				Coefficient	
L4	33.3	804754	NA	Residual sum of	5282.9581
				square	
L5	40.0	968168	0.15	r2	0.9998

Lamivudine Linearity plot – Concentration versus Peak area Response

	Zidovudine				
Level	Concentration-ppm	Area	% RSD	Statistical	Analysis
		Average			
L1	13.3	259122	0.05	SLOPE	216.583
				Y-Intercept	7503.581
L2	26.6	573999	NA	% -Intercept	0.53
L3	53.3	1159719	NA	Correlation	.99999
				Coefficient	
L4	66.6	1421669	NA	Residual sum	9934.0390
				of square	
L5	79.9	1711011	0.13	r2	0.9998

Zidovudine Linearity plot - Concentration versus Peak area Response

	Acceptances criteria			
System Suitability	- The column efficiency as determine from Lamivudine USP and			
	Zidovudine USP peaks are not less than 2500 theoretical plates.			
	- The tailing factor for the same peaks are not more than 2.0			
System Precision	- RSD for the peak areas of the five replicate injection s of Lamivudine			
	and Zidovudine peaks are not more tha 2.0%			
Method Precision	- The % RSD of % Dissolution from six samples should not be less			
	NMT 5.0			

Evaluation of System Suitability

Conclusion :System Suitability		
Compound	Lamivudine USP	Zidovudine
Column Efficiency	4131	2641
Tailing Factor	1.38	1.06

Sr.No	Lamivudine	•	Zidovudine	
	Retention time in	Peak	Retention time in	Peak
	minute	Area	minute	Area
1	2.934	806018	4.268	1421605
2	2.931	804450	4.272	1422594
3	2.933	805290	4.272	1421750
4	2.934	805213	4.267	1422237
5	2.935	804559	4.2.63	1419986
Average	2.934	805106	4.267	1421459
% RSD	0.03	0.08	0.09	1421605
Conclusion	: Test results are showing	g that the system	is precise	

System Preparation- Standard Solution

Method Precision

Sample	% W/	w of
_	Lamivudine	Zidovudine
1	102.82	105.49
2	95.8397.23	98.24
3	97.69	96.25
4	95.83	100.96
5	98.98	91.40
6	90.26	98.6
Average	97.1	98.6
% RSD	4.25	4.78

Conclusion : Test results are showing that the method is

precise

Standard Preparation : System Suitability

The column efficiency as determine from Lamivudine USP and Zidovudine USP peaks are not less than 2500 theoretical plates.

The tailing factor for the same peaks are not more than 2.0

System Precision: RSD for the peak areas of the five replicate injection s of Lamivudine and Zidovudine peaks are not more tha 2.0%

Method Precision The % RSD of % Dissolution from six samples should not be less NMT 5.0

Evaluation of System Suitability

Conclusion :System Suitability				
Compound	Lamivudine USP	Zidovudine		
Column Efficiency	5925	2741		
Tailing Factor	0.08	0.07		

System Precision-Standard Solution

Concentration	Lamivudine		Zidovudi	ne
	Retention time in minute	Peak Area	Retention time in minute	Peak Area
1	2.8372	811322	4.107	1425117
2	2.848	812917	4.128	1425687
3	2.837	811148	4.117	1425996
4	2.837	816828	4.117	1434331
5	2.837	813137	4.117	1427644
Average	2.839	813070	4.117	1427767
% RSD	0.17	0.28	0.18	0.07

Conclusion : Test results are showing that the System is precise

Overall Statistical Analysis

% w/w of	Mean	SD	% RSD
Lamivudine	99.4	4.143	4.17
Zidovudine	100.7	4.352	4.32
Set		Analyst 1	Analyst 2
Column		QCD-115	QCD-120
Equipment ID		AD051	AD064
Conclusion : Test results are showing that the method is Rugged			

Lamivudine Concentration Amount added Amount added % Recovery **Statistical** Analysis (ppm) (ppm) Sample-1/20% 32.51 32.51 100.0 Mean 101.5 Sample-2/20% 32.54 101.3 32.12 Sample-3/20% 31.45 32.44 103.1 Sample-1/100% 150.80 154.39 102.4 102.2 Mean Sample-2/100% 150.65 153.87 102.1 Sample-3/100% 150.84 154.04 102.1 192.50 Sample-1/120% 200.66 104.2 Mean 103.6 Sample-2/120% 192.58 102.7 187.48 Sample-3/120% 190.54 197.84 103.8

	Zidovudine				
Concentration	Amount added (ppm)	Amount added (ppm)	% Recovery	Statistical Analysis	
Sample-1/20%	62.35	65.30	103.1	Mean	102.9
Sample-2/20%	62.58	64.38	102.9	-	
Sample-3/20%	62.46	64.06	102.6	-	
Sample-1/100%	299.90	306.95	102.4	Mean	102.1
Sample-2/100%	299.86	306.04	102.1	-	
Sample-3/100%	300.02	305.63	101.9	_	
Sample-1/120%	380.60	397.38	104.4	Mean	103.1
Sample-2/120%	375.57	382.63	101.9	-	
Sample-3/120%	372.64	390.38	104.8	_	

The recovery results indicating that the test has an acceptable level of accuracy for determination of Lamivudine and Zidovudine in film coated tablets from 20 % level to 120 % of target Concentration.

Range

Method Procedure

Range of analytical method can be obtained from linearity, precision and accuracy data. Report the range in % with respect to specification. From the above data from linearity, precision and accuracy data, it is concluded that the range of analytical methods for determination of dissolution in film coating tablet is from 20% level to 120 % of target concentration.

Robustness

validate the analytical procedure capability to remain un affected by small but deliberate variation in method parameters and provides indicates of its reliability during normal usage. Evaluate the analytical methods robustness for the following typical variation from set procedure. Inject 10µl of standard solution five times in the chromatographic system and record the % RSD of peaks areas as per procedure.Inject 10µl of test solution three times in the chromatographic system and record the % RSD of peaks areas as per procedure

Alter the below mentioned chromatographic condition

Influence of flow rate variations From 1.0 ml/min to 0.9 ml/ min From 1.0 ml/min to 1.1 ml/ min

Influence of variation of temperature From 25 °C to 20°C From 25 °C to 30°C

Acceptances criteria :	
System Suitability	 The column efficiency as determine from Lamivudine USP and Zidovudine USP peaks are not less than 2500 theoretical plates. The tailing factor for the same peaks are not more than 2.0 The % RSD of % Dissolution from five injection of Lamivudine USP and Zidovudine USP should not be less NMT 5.
System Precision	 The overall % RSA of % Dissolution from Method precision study and robustness study together should be NMT 5.0

Standard Solution

System Suitability		Theoretical	Plate	Tailing Factor		% RSD of Peak area	
parameter	r	Lamivudin	Zidovudin	Lamivudin	Zidovudin	Lamivudin	Zidovudin
		e	e	e	e	e	e
Flow	09ml	5030	2659	1.75	1.16	0.12	0.12
change	1.1 ml	4223	2956	1.71	1.18	0.08	0.03
Temperature change at 20°C		4235	3256	1.76	1.18	0.26	0.10
Temperature change at 30°C		4405	2756	1.74	1.22	0.11	0.05
Mobile	Buffer (775) :	4810	2659	1.76	1.14	0.04	0.11
Phase	Acetonitrile(275						
Variation)							
	Buffer (725) :	4335	2636	1.74	1.21	0.02	0.13
	Acetonitrile(275						
	ì						

Sample Preparation					
System Suitability parameter		% RSD			
-		Lamivudine	Zidovudine		
Flow change	09ml	2.25	2.46		
-	1.1 ml	2.34	2.49		
Temperature ch	nange at 20°C	2.29	2.40		
Temperature cl	nange at 30°C	2.41	2.52		
Mobile Phase	Buffer (775) : Acetonitrile(275)	2.36	2.25		
Variation	Buffer (725) : Acetonitrile(275)	2.53	2.64		

Overall Statistical Analysis

System Suitability parameter			% RSD	
			Lamivudine	Zidovudine
Flow	09ml		4.27	4.73
change	1.1 ml		4.37	4.84
Temperature change at 20°C			4.23	4.64
Temperatu	re change at 30°C		4.46	4.74
Mobile	Buffer (775)	:	4.43	4.89
Phase Acetonitrile(275)				
Variation	Buffer (725)	:	4.51	4.82
	Acetonitrile(275)			

Solution stability

Demonstrate the solution stability of the standard and sample solution by injecting in regular interval

Methodology

Inject 10µl of standard solution five times in the chromatographic system and record the % RSD of peaks areas as per procedure, Separately inject 10µl of test solution three times in the chromatographic system and record the % RSD of peaks areas as per procedure-One timeInject 10µl of freshly standard solution one time along with

exiting standard and test sample solution, one time at regular interval 6 Hrs. in the chromatographic system and record the % RSD of peaks areas as per procedureSame procedure is applicable 6 hrs,12 hourd,24 hours and 48 hrs.

Acceptances criteria

- The column efficiency as determine from Lamivudine USP and Zidovudine USP peaks are not less than 2500 theoretical plates.
- The tailing factor for the same peaks are not more than 2.0
- The % RSD of % Dissolution from five injection of Lamivudine USP and Zidovudine USP should not be less NMT 2.0
- For standard the % different of assay for initial standard to standard to standard at regular intervals shall be NMT 2.0
- For sample the % different of assay for initial standard to standard to standard at regular intervals shall be NMT 2.0

Standard Solution

System Suitability parameter	% Difference		
	Lamivudine	Zidovudine	
Initial			
About 6 hours	1.08	0.79	
About 12 hours	0.57	0.57	
About 18 hours	0.90	1.46	
About24 hours	0.34	0.86	
About 48 hours	0.04	1.02	
	Sample Solution		

Sample Solution

System Suitability parameter	% Difference		
	Lamivudine	Zidovudine	
Initial			
About 6 hours	1.30	0.34	
About 12 hours	0.09	0.94	
About 18 hours	0.66	1.90	
About24 hours	0.68	1.37	
About 48 hours	0.35	0.63	

From the above data it is concluded that, the sample and standard are stable for 48 hours on the analysis bench top

Summary and conclusion: The test method is validated and meets the predetermine acceptance *criteria and used for dissolution test for routine procedure.*

Validation Data		Results	Acceptances criteria	
SPECIFICITY				
Identification	Standard Solution		RT obtained with the	
	Lamivudine	2.934	standard solution should be	
	Zidovudine	4.263	comparable with the	
	Sample Solution		sample solution	
	Lamivudine	2.934		
	Zidovudine	4.263		
LINEARITY				
Linearity	Lamivudine	0.9999	Correlation coefficient	
	Zidovudine	0.9999	shall be not less than 0.9	
PRECISION				
System Precision	% RSD		% RSD of Peak area is not	
	Lamivudine	Zidovudine	more than 2.0	
	0.08	0.07		
Method Precision	% RSD			
	Lamivudine	4.25	% RSD should not be more	
	Zidovudine	4.78	than 5.0	

Validation Data		Results	Acceptances criteria	
Intermediate Precis	ion- Ruggedness			
System Precision	% RSD	% RSD	% RSD of Peak area is not	
	Lamivudine	Zidovudine	more than 5.0	
	0.28	0.27		
Method Precision	% RSD			
	Lamivudine	2.7	% RSD should not be more	
	Zidovudine	2.80	than 5.0	
Over all	Lamivudine	4.17		
	Zidovudine	4.32		
Accuracy				
20%	Lamivudine	101.5	The % recovery of	
	Zidovudine	102.9	accuracy level should be	
100%	Lamivudine	102.2	less than 95.0	
	Zidovudine	102.1		
120%	Lamivudine	103.6		
	Zidovudine	103.7		
Range				
Range The range is 20% to 120 % of specification		pecification		
Robustness				
Robustness	Flow Variation±10%	Complies	System Suitability shall	
	Temperature Variation ±5 °C	Complies	pass as per test method	
	Mobile Phase ±20%	Complies	The overall % RSD of	
			dissolution from method	
			precession study and	
			robustness together shall be	
			more than 5.0	
Solution Stability				
Standard Solution	Stable for 48 hours			
Sample Solution				

REFERENCES

- 1. Chein YW. Novel Drug Delivery SystemsChein YW, editor.New York: Marcel Dekker, Inc1992; 139-96.
- 2. Sahoo CK, Rao SRM, Sudhakar M, Sahoo NK. Advances in osmotic drug delivery system. JChemicalandPharmRes. 2015;7:252-73.
- 3. Zentner GM, Rork GS, Himmelstein KJ. The controlled porosity osmotic pump. J ControlRelease.1985;1(4):269-82. doi: 10.1016/0168-3659(85)90003-3.
- Verma RK, Krishna DM, Garg S. Formulation aspects in the development of osmotically controlled oral drug delivery systems. J ControlRelease.2002;79(1-3):7-27. doi: 10.1016/s0168-3659(01)00550-8, PMID 11853915.
- 4. Sahoo CK, Sahoo NK, Rao SRM, Sudhakar M. A review on prevention and treatment of Aids. Pharm Pharmacol Int J.2017;5(1):00108.
- 5. MugaveroMJ, HicksCB.HIV resistance and the effectiveness of combination antiretroviral treatment. Drug Discov Today TherStrateg.2004;1(4):529-35. doi: 10.1016/j.ddstr.2004.11.006.
- 6. Jilakara VS, Chowdary YA. Formulation and evaluation of sustained release matrix tablets of zidovudine.IntJPharmSciRevRes.2013;18(1):143-9.
- Kumaravelrajan R, Narayanan N, Suba V. Development and evaluation of controlled porosity osmotic pump for nifedipine and metoprolol combination. LipidsHealth Dis. 2011;10:51. doi: 10.1186/1476-511X-10-51, PMID 21477386.
- Sahoo CK, Sahoo NK, Rao SRM, Sudhakar M, Satyanarayana K. A review on controlled porosity osmotic pump tablets and its evaluation. Bull Fac Pharm Cairo Univ.2015;53(2):195-205. doi: 10.1016/j.bfopcu.2015.10.004.
- 9. Sahoo CK, Rao SRM, Sudhakar M. Evaluation of controlled porosity osmotic pump tablets a review. ResJPharm Technol.2015;8(12):119-25. doi: 10.5958/0974-360X.2015.00312.1.
- 10. Sirisha VNL, Rao YKK, Eswaraiah MC. Formulation and evaluation of Lamivudine and Zidovudineextended release tablets.IntJ Res Pharm BiomedSci. 2012;3(4):1759-63.
- 11. Costa P, Sousa Lobo JMS. Modelling and comparison of dissolution profiles.Eur J PharmSci.2001;13(2):123-33. doi: 10.1016/s0928-0987(01)00095-1, PMID 11297896.

- 12. Sahoo CK, Rao SRM, Sudhakar M, Kokkula S. The kinetic modeling of drug dissolution for drug delivery systems: an overview. PharmLett.2015;7(9):186-94.
- 13. Sharma F, Jain H, Kanzariya V, Upadhyay U. Formulation and evaluation of controlled release osmotic tablet of metoprolol succinate. Asian J Pharm Clin Res.2014;7(3):38-43.
- 14. Banerjee A, Verma PRP, Gore S. Controlled porosity solubility modulated osmotic pump tablets of gliclazide. AAPS PharmSciTech.2015;16(3):554-68. doi: 10.1208/s12249-014-0246-0, PMID 25378281.
- 15. Kuksal A, Tiwary AK, Jain NK, Jain S. Formulation and in vitro, in vivo evaluation of extended release matrix tablet of zidovudine: influence combination of hydrophilic and hydrophobic matrix formers. AAPS PharmSciTech86 of 86. 2006;7(1):E1. doi: 10.1208/pt070101, PMID 16584139.
- 16. Khan ZA, Tripathi R, Mishra B. Design and evaluation of enteric coated microporous osmotic pump tablet (ECMOPT) of quetiapine fumarate for the treatment of psychosis. Acta Pol Pharm.2012;69(6):1125-36. PMID 23285674.
- Kanagale P, Lohray BB, Misra A, Davadra P, Kini R. Formulation and optimization of porousosmoticPumpbasedcontrolledreleasesystem of oxybutynin.AAPS PharmSciTech. 2007;8(3):E1-7. Pore former. doi: 10.1208/pt0803053, PMID 17915803.
- Rao BP, Geetha M, Purushothama N, Sanki U. Optimization and development of swellable controlled porosity osmotic pump tablet for theophylline. TropJ Pharm Res. 2009;8(3):247-55. doi: 10.4314/tjpr.v8i3.44541. Cartensen JT. Drug stability: principle and practices, MarcelDakker, New York.2nded;1995. p. 538-50.