Comparative analysis of phytochemical, antibacterial and antioxidant activity of different extracts of *Azadirachta indica* leaves

Meenakshi Bhardwaj*1, Maninder Singh2 and G.M. Lone3 Kamal Dev4

1Department of Microbiology, Pt. JawaharLal Nehru Govt. Medical College and Hospital Chamba, Himachal Pradesh, India
2Department of Pharmacology, Pt. JawaharLal Nehru Govt. Medical College and Hospital, Chamba, Himachal Pradesh, India
3Department of Pharmacology, Pt. JawaharLal Nehru Govt. Medical College and Hospital, Chamba, Himachal Pradesh, India

*Corresponding Author: Meenakshi Bhardwaj
Email id: rmaninder11@gmail.com

ABSTRACT

Introduction
The present study was designed to compare phytochemicals, antimicrobial and antioxidant activity of different extracts of leaves of *Azadirachta indica* from Himachal Pradesh. In this study, different extracts of *Azadirachta indica* leaves are screened for the occurrence of bioactive compounds.

Objectives
Analysis of Phytochemicals in various extracts of *Azadirachta indica* leaves.
Comparative evaluation of antibacterial and antioxidant activity of various extracts of *Azadirachta indica* leaves against *E. coli* and *S. aureus* using DPPH radical scavenging assay.

Material & Methods
The disc diffusion method was used to detect antibacterial activity of different extracts of *Azadirachta indica* leaves against gram positive and gram negative bacteria such as *S. aureus* and *E. coli* respectively. The methanolic extract showed the more antibacterial and antioxidant activity as compared to that of other extracts. DPPH free radical scavenging assay was performed to check antioxidant potential of *A. indica*. Phytochemical screening of different extracts showed the presence of flavonoids, tannins, phenols, alkaloid, protein/amino acid, carbohydrates and steroids in different extracts of the *A. indica* leaves.

Results
The findings suggested that phytochemicals present in *A. indica* leaves are potentially beneficial as therapeutic and antioxidative agents in pharmaceuticals, medicinal and food industries.

Keywords: *Azadirachta indica*, methanol extract, Chloroform extract, Ethyl acetate extract, Aqueous extract, Antimicrobial activity, *S. aureus*, *E. coli*, DPPH.
INTRODUCTION

Azadirachtaindica (Neem) is a fast growing evergreen popular tree of meliaceae family found in most tropical countries like India, Africa, America [1]. It has been used in Ayurvedic medicine for more than 4000 years due to its medicinal properties. Neem is called “arista” in Sanskrit, a word that means ‘perfect’, complete and imperishable [2]. The tree is regarded as “village dispensary” in India. The importance of the neem tree has been recognized by the US National Academy of Science, which publish a report in 1992 entitled “Neem- a tree for solving global problems” [3]. It possesses maximum useful non-wood products (leaves, fruits, bark, flowers, seed, gum, oil, and neem cake) than any other species. It is known to have Antiallergen, antidermatic, antifeedant, antifungal, antiinflammatory, antipyorrheic, antiscabiose, cardiac, diuretic, insecticidal, larvicidal, nematicidal, sperrmicidal and other biological activities. Quercetin and β-sitosterol were first polyphenolic flavonoids purified from fresh leaves of neem and were known to have antifungal and antibacterial activities [8]. Numerous biological and pharmacological activities have been reported including antibacterial [4], antifungal [9] and anti-inflammatory. Leaf and bark extracts of A. indica have been studied for their antioxidant activity and results of the study clearly indicated that all the tested leaf and bark extracts/fractions of neem grown in the foothills have significant antioxidant properties [10].

A study confirmed that ethanolic fraction of neem leaf (EFNL) treatment effectively up regulated the pro-apoptotic genes and proteins including p53, Bcl-2-associated X protein (Bax), Bcl-2-associated death promoter protein (Bad) caspases, phosphatase and tensin homolog gene (pTEN), and c-Jun N-terminal kinase (JNK) [11].

A methanol extract of the leaves exerts antipyretic effect in male rabbits [12]. The plant also possesses analgesic activity mediated through opioid receptors in laboratory animals.

The aqueous extract of leaf also possesses potent immune stimulant activity as evidenced by bothhumoral and cell-mediated responses [13]. Leaf extract at100 mg/kg after three weeks of oral administration causes higher IgM and IgG levels along with increased titer of anti albumin antibody [14].

Aqueous extract of neem leaves significantly decreases blood sugar level and prevents adrenaline as well as glucose-induced hyperglycaemia [15]. The aqueous leaf extract when orally fed, also produces hypoglycaemia in normal rats and decreased blood glucose levels in experimentally-induced diabetes in rats [16]. Neem leaf aqueous extract produces antiulcer effect in rats exposed to restraint – cold stressor ethanol orally by preventing mucus depletion and mast cell degranulation [17].

Oral administration of aqueous extract of Neem leaf shows anti-fertility effect in mice [18].

activities. It is largely accepted fact that numerous pharmacologically active drugs are derived from natural resources including medicinal plants [7]. Azadirachtaindica has complex of various constituents including nimbin, nimbidin, nimbolide, and limonoids and such types of ingredients play role in diseases management through modulation of various genetic pathway sand other activities.
Neemseed and leaf extracts are effective against malarial parasites [19].

In the present work, we have tried to analyses various extracts from *azadiracantha indica* leaves for its phytochemical, antibacterial, and antioxidant activity. The aim of phytochemical screening is to confirm the presence of various constituents for assessing their biological activity or medicinal use. Comparative evaluation of antibacterial activity of various extracts of *Azadirachta indica* leaves against *E.coli* and *S.aureus*. Comparative evaluation of antioxidant activity in various extracts of *Azadirachta indica* leaves using DPPH radical scavenging assay.

MATERIALS AND METHODS

Materials

Azadirachta indica leaves, HgCl₂, methanol, ethyl acetate, chloroform, DMSO, Bacterial strain (*Staphylococcus aureus*, *Eschericia. Coli*), Ampicillin, Nutrient agar, Fehling reagent, million reagent.

Sample Collection

A. indica leaves were collected from Bilaspur district of Himachal Pradesh in the month of January 2016.

Washing and Drying

Leaves were washed thoroughly with distilled water and surface sterilized with 0.1% HgCl₂ and then air dried for 4-5 days.

Grinding and Preparation of extracts

A. indica leaves were ground into fine powder using mortor and pestle. To 10 g of *A.indica* leaves powder were soaked in 100 ml methanol, ethyl acetate and chloroform separately and kept on shaker for 3-4 days. The extracts were then filtered through whatman filter paper and filtrate were collected in a china dish. The filtrates were dried by evaporates and dissolved in DMSO (100 mg/ml).

Preparation of the aqueous extract

The aqueous extract was prepared according to Sripandikulchaet al., (2000), with the slight changes. 5g of *A. indica* powder was boiled in 80 ml distilled water for 2-3 hours. Then solution was filtered through a whatman filter paper and filtrate was collected in a Petri dish. The filtrate was evaporated by heating over the hot plate at temperature 60° C for 2-3 hours. The weight of the crude extract was recorded. The crude extract dissolved in the DMSO at concentration of 100 mg/ml.

Bacterial strains and Antibiotic used

Two bacterial strains were used in this study-one gram positive (*Staphylococcus aureus*) and one gram negative (*Eschericia. coli*). Both the strains were obtained from Yeast Biology Lab, Shoolini University, Solan. Pure cultures were maintained on nutrient agar plates and stored at 4°C. Ampicillin (100µg/ml) was used in this study.

Preparation of inoculum

Bacterial suspensions were prepared from over night cultures by the direct colony method. Colonies were taken directly from the plate and suspended into 1 ml of sterile 0.85% saline. The turbidity of initial suspension was adjusted comparing with 0.5 McFarland Standard which is equivalent to 10⁸ colony forming units (CFU)/ml. Bacterial lawn was spread on nutrient agar plates using a sterile cotton swab.

Antimicrobial susceptibility test

The qualitative antimicrobial activity of different extracts of *A. indica* leaves were performed by using well diffusion method (Felten et al., 2002).50 µl of plant extracts (50µg) were poured into 6mm well. 10 µl ampicillin of concentration 100 µg/ml was used as a positive control and DMSO (solvent) was taken as a negative control. The plates were kept in the incubator at 37°C aerobically for 18 hours. The inhibition zones obtained around the disc were measured using HI Antibiotic Zone Scale-C.

PHYTOCHEMICAL TESTS

(QUALITATIVE ANALYSIS)

Detection of phenolics (Ferric Chloride Test)

Ferric chloride is acidic in nature; it produces H₃O⁺ ions when dissolved in water. Compounds with a phenol group will form a blue, violet, purple, green, or red-brown colour upon addition of aqueous ferric chloride. Extracts were treated with 3-4 drops of 5% ferric chloride solution. The appearance of bluish or greenish black coloration
indicates the presence of pyrogallol or catechol tannins. Formation of bluish black colour indicates the presence of phenols.

Detection of flavonoids (Lead acetate Test)

The conjugation in flavonoid compounds produces a yellow colour, while the extended conjugation in the resultant anthocyanin shifts the colour further out to the red region of the visible spectrum. The dramatic change in colour makes this a simple visual test for the presence of flavones. Extracts were treated with few drops of 10% lead acetate solution. Formation of yellow colour precipitate indicated the presence of flavonoids.

Detection of carbohydrates (Fehling’s test)

Fehling’s solution contains blue alkaline cupric hydroxide solution, which upon heating with plant extract gets reduced to yellow or red cuprous oxide. Extracts were treated with 2-3 drops of Fehling reagent and heated to 10 minutes. Appearance of red colour precipitate indicated the presence of reducing sugars.

Detection of alkaloids (Mayer’s Test)

Mercury salt reacts with the lone pairs of nitrogen that are present, then the typical off-white precipitate falls out. An uncharged mercury salt is, thus obtained. Extracts were dissolved individually in dilute hydrochloric acid and filtered. Filtrates were treated with 2-3 drops of Mayer’s reagent (Potassium Mercuric Iodide). Formation of a yellow coloured precipitate indicated the presence of alkaloids.

Detection of Proteins (Millon test) and amino acids (xanthoprotein test)

The reaction is due to the presence of the hydroxyphenyl group, C₆H₅OH in the amino acid molecule; and any phenolic compound which is unsubstituted in the 3,5 positions such as tyrosine, phenol and thymol will give the reaction. Solutions of nitric acid containing mercuric nitrate reacts with phenols, producing red colours or yellow precipitates which react with nitric acid to form red solution. The reaction probably depends on the formation of a nitro compound; which then reacts with phenol.20 μl of millon reagent was added to the test tube containing 1ml of extract and then heated in water bath for 10 minutes. The samples were cooled and 10μl of 1% sodium nitrite solution. Red colour indicated the presence of proteins.

Xanthoprotein test gives positive results with proteins, peptones, peptides, amino acids and other primary amines, including ammonia. Proline and hydroxyproline give yellow colour with ninhydrin, while other acids give blue to purple colour.4-5 drops of 0.1% ninhydrin solution were added to 1ml of extract. Purple colour indicated the presence of amino acids.

Detection of triterpenoids (Salkowski’s Test)

Salkowski’s test detect presence of cholestrol. Presence of double bond in one cholestrol ring is responsible for its ability to form coloured product in the presence of concentrated inorganic acid and it should yield a layering of colour. Extracts were treated with chloroform and filtered. The filtrates were treated with few drops of concentrated Sulphuric acid, shaken and allowed to stand. Appearance of golden yellow colour indicated the presence of triterpenes.

ANTIOXIDANT ACTIVITY (DPPH RADICAL SCAVENGING ASSAY)

The DPPH radical scavenging assay of various extracts of *A. indica* was conducted (Shahet al., 2013). In this method, 900 μl of 0.1 mM DPPH solution (prepared in ethanol) was mixed with 100 μl of methanolic, ethyl acetate, chloroform and aqueous extracts of *A.indica* ranging from 2.5-20 μg/ml. The reaction mixture was shaken and incubated in the dark at room temperature for 30 min, and the absorbance was read at 517 nm against the blank. Ascorbic acid was used as standard. DPPH radical scavenging activity was calculated from the following equation:

\[\text{DPPH radical scavenging activity (\%)} = \frac{A_c - A_s}{A_c} \times 100 \]

Where A_c-Absorbance of control, A_s-Absorbance of test sample.

RESULTS

Extract yield

The yield obtained of the different extracts was shown in.
Table -1: Percentage Yield of different extracts of *A. indica* leaves. Maximum yield was obtained with ethyl acetate followed by methanol and water.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Extracts</th>
<th>Weight of extracts(mg)</th>
<th>Percentage Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Aqueous</td>
<td>95mg</td>
<td>1.9</td>
</tr>
<tr>
<td>2.</td>
<td>Methanol</td>
<td>200mg</td>
<td>2</td>
</tr>
<tr>
<td>3.</td>
<td>Chloroform</td>
<td>60mg</td>
<td>0.6</td>
</tr>
<tr>
<td>4.</td>
<td>Ethyl acetate</td>
<td>530mg</td>
<td>5.3</td>
</tr>
</tbody>
</table>

The result showed that the yield of ethyl acetate extract was higher than other extracts. Fig. 1

Extracts of *A. indica* leaves: A. Methanol extract; B. Chloroform extract; C. Ethyl acetate extract; D. Aqueous extract.

It may be due to the different polarity of the solvents used.

Analysis of Phytochemicals in various extracts of *Azadirachta indica* leaves

The screening of phytochemicals was done in all the four extracts by performing various tests as listed in materials and method section.

Test for phenolics

The ferric chloride test formation of greenish black colour revealed that phenolics were present in methanol, ethyl acetate and aqueous extracts. The chloroform extract did not reveal presence of phenolics.

Tests for flavonoids

In the lead acetate test formation of yellow precipitate revealed that flavonoids are present in all the extracts (fig. 4.3). Control contains lead acetate. The yellow precipitate was detected in all the extracts.

Test for carbohydrates

The Fehling’s test for carbohydrates revealed the presence of reducing sugars in aqueous, methanol and ethyl acetate extracts, whereas chloroform extract showed absence of carbohydrate. Formation of green or red colour indicated the presence of reducing sugar (Fig. 4.3).
Test for alkaloids

The Mayer’s test for alkaloids revealed that aqueous, methanol, chloroform, ethyl acetate and crude methanol show presence of alkaloids (Fig. 4.4). In this (A) is control which contain only reagent. In all extracts, yellow colour precipitate or turbidity was observed. Formation of yellow colour indicated presence of alkaloids.

Ninhydrin test

Formation of yellow colour in the ethyl acetate extract revealed the presence of amino acids. The control in the contains the conc. HNO₃. The yellow colour was absent in the aqueous, methanol and chloroform extract, showing the absence of amino acids.

Tests for triterpenoids

In salkowski’s test, formation of reddish brown colour revealed that triterpenoids were present in all the extracts. Reddish brown colour was formed in the aqueous, methanol, chloroform and ethyl acetate extract of A. indica leaves.

The result showed that various phytochemicals were present in the aqueous, methanol, chloroform and ethyl acetate extract. Alkaloids, flavonoids, terpenoids were present in all the four extracts. Tannins were absent in the ethyl acetate extract and phenols were only present in the ethyl acetate extract. Sterols and phlobatannins were absent in all the four extracts. Saponins were only present in the aqueous extract and amino acids were only present in the ethyl acetate extract. “++” indicates the more intense colour as compared to other extracts.

Comparative evaluation of antibacterial activity of various extracts of azadirachtaindicaleavesagainst E. coli and S.aureus

The antimicrobial activity of different extracts of A.indica was tested against the S.aureus and E.coli bacteria. The zone of inhibition against S.aureus was 19.5 mm for methanol extract, 11.5 mm for ethyl acetate extract and 13 mm for aqueous extract, chloroform extracts showed no zone of inhibition. The ampicillin (+ve control) showed the inhibition zone of 30 mm. DMSO (-ve control) showed no zone against the S.aureus. In case of E.coli bacteria, zone of inhibition of 18.5 mm was observed for methanol extract, 10 mm for ethyl acetate extract and of 9 mm for aqueous extract. Chloroform extract showed no zone of inhibition. The ampicillin (+ve control) showed the inhibition zone of 10 mm. DMSO (negative control) showed no zone of inhibition.

Comparative antibacterial activity of different extracts of A. Indica leaves

In the present study, we found that methanolic extract of A.indica leaves showed more antibacterial activity as compared to that of chloroform, ethyl acetate and aqueous extracts. The increasing order of antibacterial activity against S.aureus is – Ethyl acetate < aqueous extract<Methanolic extract, while in case of E. coli, aqueous extract< Ethyl acetate<Methanolic extract.

![Fig-2 Comparative antibacterial activity of different extracts of A. indica leaves](image)

In vitro antioxidant activity

A. indica leaves extract exhibited good antioxidant activities in comparison to ascorbic acid. IC₅₀ value (half maximal inhibitory concentration) indicates how much of a particular drug or other substance is required to inhibit a given biological process.
DPPH radical scavenging activity

In DPPH (1, 1-diphenyl-2-picrylhydrazyl) radical scavenging activity the results showed that percentage inhibition increased with increasing concentration from 2.5µg/ml to 10 µg/ml. DPPH antioxidant assay is based on the ability of a stable free radical, to decolorize in the presence of antioxidants. The DPPH radical contains an odd electron at 517 nm and is visible with deep purple color. When DPPH accepts an electron donated by an antioxidant compound, it is decolorized and can be quantitatively measured from the changes in the absorbance. Free radical scavenging effect of the corresponding different A.indica extracts of methanol, chloroform, ethyl acetate and aqueous extracts were determined spectrophotometrically at 517nm. Ascorbic acid was used as standard free radical scavenger reference compound. DPPH radical scavenging activity (%) =1-A/A×100 Where Ac-Absorbance of control, As-Absorbance of test sample.

IC_{50} value is a measure of the effectiveness of substance in inhibiting a specific biological or biochemical function. The IC_{50} is the concentration of an inhibitor where the response (or binding) is reduced by half. The IC_{50} is the concentration of an inhibitor where the response or binding) is reduced by half. In the present study, the different extracts of A. indica had significant scavenging effect on the DPPH radical which was generally significantly increasing with the increase in the concentration (Fig-3).

![Graph showing DPPH radical scavenging activity of methanol, chloroform, ethyl acetate and aqueous extracts of A. indica leaves.](image)

Fig-3 DPPH radical scavenging activity of methanol, chloroform, ethyl acetate and aqueous extracts of A. indica leaves.

Methanolic extract of A. indica leaves showed comparable antioxidant activity with ‘ascorbic acid’. In general antioxidant activity of methanolic extracts was higher than that of chloroform, ethyl acetate and aqueous extracts.

DISCUSSION

Many of the existing synthetic drugs cause various side effects. Hence, natural plant based drug compounds could be useful in meeting this demand for newer drugs with minimal side effects. A. indica leaves possessed good antibacterial activity confirming the great potential of bioactive compounds and is useful for rationalizing the use of this plant in primary health care. In the present work, we elucidated that different extracts of A. indica have antimicrobial activity and contains various phytochemicals and antioxidant activity. The aim of phytochemical screening is to confirm the presence of various constituents for assessing their biological activity or medicinal use. The most important of these are alkaloids, saponins, steroids, phenols, flavonoids and tannins. Preliminary phytochemical screening of methanolic, chloroform, ethyl acetate and aqueous extracts of leaves of A.indica showed the presence of phenols, tannins, flavonoids, carbohydrates, terpenoids, and alkaloids. Protein and amino acids were absent in all extracts of A. indica. Alkaloids are organic nitrogenous substances. These are alkaline in nature and exhibit an extra ordinary array of pharmacological activities. The flavonoids act as antioxidants which provide protection against free radicals that damage cells and tissues. Tannins promote healing of wounds. These are effective in diarrhea, colitis and peptic ulcers. High flavonoids content indicates the probability of significant antioxidant potential of the A. indica leaves [20]. Here in the present study, found flavonoids in all different extracts of A. indica.
The antimicrobial activity of the aqueous, methanol, chloroform and ethyl acetate extracts of A. indica was checked against the bacterial strains of S. aureus, and E. coli. In an earlier study, Khan et al., 1987 reported that A. indica leaves extract had a characteristic effect on dermatophytes especially for lower polar extracts over high polar ones. [21] Showed that A. indica leaves extract was found to have interesting inhibitory action on a wider spectrum of microorganisms including C. albicans, C. tropicalis, Neisseria gonorrhoea, multi drug resistant S. aureus, E. coli and Herpes simplex [22]. Showed the fungicidal and bactericidal properties of extracts from leave. Methanolic extract of A.indica leaves showed more antibacterial activity as compared to that of the chloroform, ethyl acetate and aqueous extracts. The zone of inhibition against S.aureus was 19.5 mm for methanol extract, 11.5 mm for ethyl acetate extract and of 13 mm for aqueous extract. Chloroform extracts showed no zone of inhibition against S.aureus. While in case of E.coli bacteria the zone of inhibition of 18.5 mm was observed around the methanol extract, 10 mm around the ethyl acetate extract and of 9 mm around the aqueous extract. Chloroform extract showed no zone of inhibition. The increasing order of antibacterial activity against S.aureus – Ethyl acetate< aqueous extract< methanolic extract while in case of E.coli – Aqueous extract< ethyl acetate< methanolic extract. Methanolic extracts showed more antioxidant activity as compared to other extracts of A. indica. also showed antioxidant activity of methanolic extract of leaves of A. indica.[23]

CONCLUSION

In the present project entitled “Comparative analysis of Phytochemicals, antibacterial and antioxidant activity of different extracts of Azadirachta indica leaves” we investigated various phytochemicals in different extracts of leaves. The result suggested that alkaloids, flavonoids, terpenoids were present in all the four extracts. Tannins were absent in the ethyl acetate extract and phenols were only present in the ethyl acetate extract. Sterols and phlobatannins were absent in all the four extracts. Saponins were only present in the aqueous extract and amino acids were only present in the ethyl acetate extract. The bacterial strains Staphylococcus aureus and Escherichia coli were used against the different extracts of Azadirachta indica leaves i.e. methanol, chloroform, ethyl acetate and aqueous. The investigation revealed that, methanol showed the maximum antimicrobial activity against Staphylococcus aureus followed by E.coli. Chloroform extract showed no antimicrobial activity against any bacterial strains. Therefore the results suggested that bioactive compounds found in leaves of Azadirachta indica, contribute to its pharmacological activities.

The DPPH free radical scavenging activity was performed to study the antioxidant potentials of A. indica leaves. Methanolic extract of A. indica showed more antioxidant activity as compared to chloroform, ethylacetate and aqueous extracts. The result suggested the antimicrobial and antioxidant potential of A. indica leaves.

REFERENCE

Source of Support: Nil. Conflict of Interest: None declared.